[8e0848]: / Fig6H_DLBCL_GSE98588_CGA_oncoprint.R

Download this file

201 lines (170 with data), 9.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Plot oncoprint of DLBCL (GSE98588 Chapuy et al.) data CGA results (Figure 6H)
library(ComplexHeatmap)
library(circlize)
library(RColorBrewer)
library(grid)
library(dplyr)
library(readxl)
# load data
load("GSE98588_fm.Rdata")
# read correlation results
cor <- read.table("TableS6_GSE98588_DLBCL_antigen_correlations.tsv", sep = "\t", header = TRUE)
cor_gcb <- read.table("TableS6_GSE98588_DLBCL_antigen_correlations_ABC.tsv", sep = "\t", header = TRUE)
cor_abc <- read.table("TableS6_GSE98588_DLBCL_antigen_correlations_GCB.tsv", sep = "\t", header = TRUE)
# remove case with testicular involvement
fm <- fm[,!fm["B:CLIN:hodz_Testicular_invovlement",]%in%c(1)]
# order samples by CGA number
fm_cga_order <- fm[,order(as.numeric(fm["N:SAMP:nCGA",]), decreasing = FALSE)]
# create matrix with selected alterations
cor_noduplicates <- cor[grepl("nCGA", cor$featureA)&!grepl("DEL_LOSS|AMP_GAIN", cor$featureB),]
gnab_top <- cor_noduplicates[order(cor_noduplicates$p),]
gnab_top <- gnab_top[grepl("GNAB", gnab_top$featureB),]
gnab_top <- gnab_top[gnab_top$FDR<0.1,]
cnvr_top <- cor_noduplicates[order(cor_noduplicates$p),]
cnvr_top <- cnvr_top[grepl("CNVR", cnvr_top$featureB),]
cnvr_top <- cnvr_top[cnvr_top$FDR<0.05,]
# combine cnv and mutations and edit feat to match fm
feat_original <- rbind(cnvr_top, gnab_top)
feat <- feat_original %>%
mutate(featureB = gsub("AMP:GAIN", "AMP_GAIN",
gsub("_GAIN", ":GAIN",
gsub("_LOSS", ":LOSS",
gsub("_AMP", ":AMP",
gsub("_DEL", "_DEL",
gsub("SV_BCL2", "BCL2:SV", featureB))))))) %>%
as.data.frame()
mat <- fm_cga_order[as.character(feat[,"featureB"]),]
# change codes for CNVs
# mat[grepl(":AMP|:GAIN", rownames(mat)),][mat[grepl(":AMP|:GAIN", rownames(mat)),]==1] <- "Amplification/gain"
mat[grepl(":LOSS|:DEL", rownames(mat)),][mat[grepl(":LOSS|:DEL", rownames(mat)),]==1] <- "Deletion/loss"
mat[grepl("GNAB", rownames(mat)),][mat[grepl("GNAB", rownames(mat)),]==1] <- "Nonsynonymous mutation"
# change row names
rownames(mat) <- gsub("Q$", "q",
gsub("([0-9])P$", "\\1p",
gsub("([0-9])_([0-9])", "\\1.\\2",
gsub("_nonsynonymous|:AMP|:GAIN|:DEL|:LOSS|:LOSS_DEL|_GAIN|_DEL|_low_grade", "",
gsub(":::::", "",
gsub(".?:....:", "",
gsub("SV:BCL2", "BCL2 (SV)",
gsub("([0-9])Q([0-9])", "\\1q\\2",
gsub("([0-9])P([0-9])", "\\1p\\2",
rownames(mat))
)
)
)
)))))
mat <- as.matrix(mat)
# create data frames for heatmap annotations
coo <- as.character(fm_cga_order["B:SAMP:COO_byGEP_ABC",])
coo[coo=="1"] <- "ABC"
coo[fm_cga_order["B:SAMP:COO_byGEP_GCB",]==1] <- "GCB"
coo[fm_cga_order["B:SAMP:COO_byGEP_Unclassified",]==1] <- "Unclassified"
# data frame of sample annotations
annot <- droplevels(data.frame(COO_byGEP = coo,
IPI = as.factor(fm_cga_order["N:CLIN:IPI",])))
levels(annot$IPI) <- c("NA", "0", "1", "2", "3", "4", "5")
annot[is.na(annot)] <- "NA"
# change mutation load of hypermutated sample
fm_cga_order["N:SAMP:numberOfMutations",][fm_cga_order["N:SAMP:numberOfMutations",]==5956] <- 505
## create heatmap annotations
ha1 <- HeatmapAnnotation(CGA = anno_barplot(as.numeric(fm_cga_order["N:SAMP:nCGA",]),
bar_width = 0.75,
border = FALSE,
axis = TRUE,
axis_param = list(gp = gpar(fontsize = 5, lwd = 0.5)),
gp = gpar(col = NA, fill = "grey50"),
ylim = c(0,8)),
show_annotation_name = F,
height = unit(0.5, "cm"))
ha2 = HeatmapAnnotation(Mutations = anno_barplot(as.numeric(fm_cga_order["N:SAMP:numberOfMutations",]),
bar_width = 0.75,
border = FALSE,
axis = TRUE,
axis_param = list(gp = gpar(fontsize = 5, lwd = 0.5)),
gp = gpar(col = NA, fill = "black")
),
CNVs = anno_barplot(as.numeric(fm_cga_order["N:SAMP:numberOfCNAs",]),
bar_width = 0.75,
border = FALSE,
axis = TRUE,
axis_param = list(gp = gpar(fontsize = 5, lwd = 0.5)),
gp = gpar(col = NA, fill = "black")
),
Purity = anno_barplot(as.numeric(fm_cga_order["N:SAMP:purity_absolute_reviewed",]),
bar_width = 0.75,
border = FALSE,
axis = TRUE,
axis_param = list(gp = gpar(fontsize = 5, lwd = 0.5)),
gp = gpar(col = NA, fill = "black")
),
df = annot,
col = list(COO_byGEP = structure(brewer.pal(length(unique(annot$COO_byGEP)), "Set1"),
names = as.character(unique(annot$COO_byGEP))),
IPI = structure(gsub("#D53E4F", "grey", rev(brewer.pal(length(unique(annot$IPI)), "Spectral"))),
names = sort(as.character(unique(annot$IPI))))
),
annotation_height = c(3, 3, 3, 3, 3),
annotation_legend_param = list(COO_byGEP = list(title = "Subtype", title_gp = gpar(fontsize = 5),
labels_gp = gpar(fontsize = 5), grid_height = unit(0.2, "cm"), grid_width = unit(2, "mm")),
IPI = list(title = "IPI", title_gp = gpar(fontsize = 5),
labels_gp = gpar(fontsize = 5), grid_height = unit(0.2, "cm"), grid_width = unit(2, "mm"))
),
gap = unit(0.75, "mm"),
show_annotation_name = F,
height = unit(1.5, "cm")
)
cor_adj_p <- cor_noduplicates$FDR[match(feat_original$featureB, cor_noduplicates$featureB)]
zero_col_mat = matrix(nrow = nrow(mat), ncol = 0)
rownames(zero_col_mat) <- cor_adj_p
# make heatmap
ht <- Heatmap(mat,
name = "oncoprint",
col = c("0" = "#EDEDED", "Nonsynonymous mutation" = "black", "Amplification/gain" = "#DC0000FF", "Deletion/loss" = "#3C5488FF", "Structural variation" = "#00A087FF"),
rect_gp = gpar(col= "white", lwd = unit(0.4, "mm")),
top_annotation = ha1,
bottom_annotation = ha2,
row_names_side = "left",
row_names_gp = gpar(fontsize = 7),
show_column_names = FALSE,
show_column_dend = FALSE,
cluster_columns = FALSE,
cluster_rows = FALSE,
split = c(rep("CNV/SV",1), rep("Mutation",3)),
row_title_gp = gpar(fontsize = 5),
show_heatmap_legend = TRUE,
heatmap_legend_param = list(title = "Alteration",
title_gp = gpar(fontsize = 5),
labels_gp = gpar(fontsize = 5),
grid_height = unit(0.2, "cm"),
grid_width = unit(2, "mm"))
) +
Heatmap(zero_col_mat,
row_names_gp = gpar(fontsize = 5))
# oncoprint
pdf("Figure6H_DLBCL_GSE98588_CGA_oncoprint.pdf", height = 1.5, width = 4.5)
draw(ht, padding = unit(c(2, 5, 2, 2), "mm"))
decorate_annotation("CGA", {
grid.text("CGA number", unit(0, "npc") - unit(6, "mm"), 0.5,
default.units = "npc", just = "right", gp = gpar(fontsize = 7))
})
decorate_annotation("Mutations", {
grid.text("Mutations", unit(0, "npc") - unit(6, "mm"), 0.5,
default.units = "npc", just = "right", gp = gpar(fontsize = 5))
})
decorate_annotation("CNVs", {
grid.text("CNVs", unit(0, "npc") - unit(6, "mm"), 0.5,
default.units = "npc", just = "right", gp = gpar(fontsize = 5))
})
decorate_annotation("Purity", {
grid.text("Purity", unit(0, "npc") - unit(6, "mm"), 0.5,
default.units = "npc", just = "right", gp = gpar(fontsize = 5))
})
decorate_annotation("COO_byGEP", {
grid.text("Subtype", unit(0, "npc") - unit(6, "mm"), 0.5,
default.units = "npc", just = "right", gp = gpar(fontsize = 5))
})
decorate_annotation("IPI", {
grid.text("IPI", unit(0, "npc") - unit(6, "mm"), 0.5,
default.units = "npc", just = "right", gp = gpar(fontsize = 5))
})
dev.off()