|
a |
|
b/Fig5F_VISTA_IHC_boxplot.R |
|
|
1 |
|
|
|
2 |
# Plot IHC percentages of VISTA+ cells in different hematological cancers (Figure 5F) |
|
|
3 |
|
|
|
4 |
library(data.table) |
|
|
5 |
library(ggplot2) |
|
|
6 |
library(cowplot) |
|
|
7 |
library(ComplexHeatmap) |
|
|
8 |
library(dplyr) |
|
|
9 |
library(ggpubr) |
|
|
10 |
|
|
|
11 |
# read mIHC data |
|
|
12 |
data <- fread("vista_ihc.txt", data.table = F) |
|
|
13 |
|
|
|
14 |
# prepare data frame for plotting |
|
|
15 |
df <- data %>% |
|
|
16 |
mutate(Disease_2 = gsub("BP CML", "CML", |
|
|
17 |
gsub("PH. B-ALL", "pre-B-ALL", |
|
|
18 |
gsub("HB", "Healthy BM", Disease))), |
|
|
19 |
VISTA = VISTA.fraction*100) %>% |
|
|
20 |
mutate(Disease_2 = ifelse(FAB %in% c("4", "5"), "AML M4/M5", |
|
|
21 |
ifelse(Disease_2 == "AML", "AML other", Disease_2))) %>% |
|
|
22 |
mutate(Disease_2 = factor(Disease_2, levels = c("AML M4/M5", "AML other", "CML", "pre-B-ALL", "T-ALL", "Healthy BM"))) |
|
|
23 |
|
|
|
24 |
# boxplot |
|
|
25 |
p <- ggplot(df, aes(x=Disease_2, y=VISTA, fill = Disease_2)) + |
|
|
26 |
geom_boxplot(outlier.shape = NA) + |
|
|
27 |
geom_jitter(width = 0.1, color = "grey20") + |
|
|
28 |
scale_size_continuous(range = c(0.1, 2)) + |
|
|
29 |
ylab("% VISTA+ cells") + |
|
|
30 |
xlab("") + |
|
|
31 |
guides(fill = FALSE) + |
|
|
32 |
theme_cowplot() + |
|
|
33 |
theme(axis.text.x = element_text(angle=45, hjust=1)) + |
|
|
34 |
labs(color = "") + |
|
|
35 |
stat_compare_means(aes(label = ..p.signif..), |
|
|
36 |
method = "wilcox.test", |
|
|
37 |
method.args = list(alternative = "two.sided"), |
|
|
38 |
ref.group = "Healthy BM", |
|
|
39 |
label.y = 95) |
|
|
40 |
|
|
|
41 |
# print |
|
|
42 |
pdf("Figure5F_VISTA_IHC_boxplot.pdf", width = 3, height = 4) |
|
|
43 |
p |
|
|
44 |
dev.off() |