|
a |
|
b/Fig3_plots_scRNA.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/scRNA/functions.scRNA.analysis.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) |
|
|
4 |
library(Seurat) |
|
|
5 |
|
|
|
6 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
7 |
|
|
|
8 |
load("FIMM_AML_scRNA.Rdata") |
|
|
9 |
FIMM=scmat |
|
|
10 |
|
|
|
11 |
load("HCA_scRNA.Rdata") |
|
|
12 |
HCA=scmat |
|
|
13 |
|
|
|
14 |
load("AML_Galen_scRNA.Rdata") |
|
|
15 |
GALEN=scmat |
|
|
16 |
GALEN[["batch"]][,1]=gsub("AML|.D0", "", GALEN[["batch"]][,1]) |
|
|
17 |
|
|
|
18 |
colors.group=data.table::fread("colors_lineage.txt", data.table = F, header = F) |
|
|
19 |
|
|
|
20 |
# plot proportion of different T-cell types |
|
|
21 |
prop1=data.frame(prop.table(table(FIMM[["SingleR.label"]][,1], FIMM[["batch"]][,1]), margin=2)) |
|
|
22 |
prop2=data.frame(prop.table(table(GALEN[["SingleR.label"]][,1], GALEN[["batch"]][,1]), margin=2)) |
|
|
23 |
prop3=data.frame(prop.table(table(HCA[["SingleR.label"]][,1], HCA[["batch"]][,1]), margin=2)) |
|
|
24 |
prop4=data.frame(prop.table(table(HCA[["SingleR.label"]][,1], rep("HCA", dim(HCA)[2])), margin=2)) |
|
|
25 |
|
|
|
26 |
# plot MDS-like samples to map: |
|
|
27 |
FIMM[["MDS"]]=ifelse(grepl("5897|3667|5249", FIMM[["batch"]][,1]), "MDS-like", "other") |
|
|
28 |
|
|
|
29 |
plot.scatter.seurat(scmat = FIMM, colors.group = data.frame("V1"=c("MDS-like", "other"), "V2"=c("darkgreen", "orange"), stringsAsFactors = F), seurat.feature = "MDS", name="Figure3G.pdf", cores=1, SIZE = 0.25, rasterize=F, width = 64*6, height = 74*6, text.size=10*6) |
|
|
30 |
plot.scatter.seurat(scmat = FIMM, colors.group = colors.group[colors.group[,1]%in%prop1$Var1[prop1$Freq>0.001],],seurat.feature = "SingleR.label", name="Figure3F.pdf", cores=1, SIZE = 0.25, rasterize=F, width = 64*6, height = 74*6, text.size=10*6) |
|
|
31 |
|
|
|
32 |
cells=gsub(":.*.", "", levels(Idents(FIMM))) |
|
|
33 |
|
|
|
34 |
pdf("FigureS3K.pdf", height = 8, width = 9) |
|
|
35 |
DimPlot(FIMM, cols = colors.group[match(cells, colors.group[,1]),2], label = T) |
|
|
36 |
DimPlot(FIMM, cols = colors.group[match(cells, colors.group[,1]),2], label = F) |
|
|
37 |
dev.off() |
|
|
38 |
|
|
|
39 |
plot.proportion=function(proportions, celltype, sample.order=NULL, colors.group, max.y=1){ |
|
|
40 |
proportions.cd=proportions[grepl(celltype, proportions$Var1),] |
|
|
41 |
|
|
|
42 |
if(!is.null(sample.order))proportions.cd$Var2=factor(proportions.cd$Var2, levels=sample.order) |
|
|
43 |
proportions.cd$Var1=factor(proportions.cd$Var1, levels=unique(as.character(proportions.cd$Var1))) |
|
|
44 |
myColors=colors.group[match(levels(proportions.cd$Var1), colors.group$V1),2] |
|
|
45 |
names(myColors) <- levels(proportions.cd$Var1) |
|
|
46 |
colScale2 <- scale_fill_manual(values = myColors) |
|
|
47 |
p2=ggplot(data=proportions.cd, |
|
|
48 |
aes(x=Var2, y=Freq, fill=Var1)) + colScale2 + |
|
|
49 |
geom_bar(stat = "identity", inherit.aes = T) + |
|
|
50 |
ggtitle(paste(" ", " ", sep="\n")) + |
|
|
51 |
theme(legend.position = "none", legend.direction = "horizontal", |
|
|
52 |
axis.line.y = element_line(size=1, colour = "black"), |
|
|
53 |
axis.line.x = element_blank(), |
|
|
54 |
panel.grid.major = element_blank(), |
|
|
55 |
panel.grid.minor = element_blank(), |
|
|
56 |
# axis.text.x = element_blank(), |
|
|
57 |
axis.title.x = element_blank(), |
|
|
58 |
axis.title.y = element_blank(), |
|
|
59 |
axis.ticks.x = element_blank(), |
|
|
60 |
axis.text.x = element_text(colour="grey20",size=10,face="plain", family="Helvetica", angle = 90, hjust = 1), |
|
|
61 |
axis.text.y = element_text(colour="grey20",size=10,face="plain", family="Helvetica"), |
|
|
62 |
axis.ticks.length = unit(2,"mm"), |
|
|
63 |
panel.border = element_blank(), panel.background = element_blank(), |
|
|
64 |
plot.title = element_text(size = 10, face = "bold", family="Helvetica"), |
|
|
65 |
text=element_text())+ |
|
|
66 |
theme(plot.margin=unit(c(1,1,1,1), "mm"))+ coord_cartesian(ylim=c(0,max.y)) |
|
|
67 |
return(p2) |
|
|
68 |
} |
|
|
69 |
|
|
|
70 |
p1=plot.proportion(proportions = prop1, celltype = "HSC|GMP|CMP|MPP|MEP|Monocyte", |
|
|
71 |
sample.order=c("5897", "3667","5249", "6333","5238","5750", "6386", "6187"), |
|
|
72 |
colors.group=colors.group) |
|
|
73 |
|
|
|
74 |
p2=plot.proportion(proportions = prop2, celltype = "HSC|GMP|CMP|MPP|MEP|Monocyte", |
|
|
75 |
colors.group=colors.group) |
|
|
76 |
|
|
|
77 |
p3=plot.proportion(proportions = prop3, celltype = "HSC|GMP|CMP|MPP|MEP|Monocyte", |
|
|
78 |
colors.group=colors.group) |
|
|
79 |
|
|
|
80 |
p4=plot.proportion(proportions = prop4, celltype = "HSC|GMP|CMP|MPP|MEP|Monocyte", |
|
|
81 |
colors.group=colors.group) |
|
|
82 |
|
|
|
83 |
ggsave(plot = p1, filename = "Figure3H_blast_proportion.pdf", width = 1.5, height = 2) |
|
|
84 |
# ggsave(plot = p2, filename = "Blast_proportion_Galen_AML.pdf", width = 6, height = 2) |
|
|
85 |
# ggsave(plot = p3, filename = "Blast_proportion_HCA_samples.pdf", width = 6, height = 2) |
|
|
86 |
ggsave(plot = p4, filename = "Figure3H_blast_proportion_HCA.pdf", width = 2, height = 2) |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
p1=plot.proportion(proportions = prop1, celltype = "NK|CD8. Tem", |
|
|
90 |
sample.order=c("5897", "3667","5249", "6333","5238","5750", "6386", "6187"), |
|
|
91 |
colors.group=colors.group, max.y = 1) |
|
|
92 |
|
|
|
93 |
p2=plot.proportion(proportions = prop2, celltype = "NK|CD8. Tem", |
|
|
94 |
colors.group=colors.group, max.y = 1) |
|
|
95 |
|
|
|
96 |
p3=plot.proportion(proportions = prop3, celltype = "NK|CD8. Tem", |
|
|
97 |
colors.group=colors.group, max.y = 1) |
|
|
98 |
|
|
|
99 |
p4=plot.proportion(proportions = prop4, celltype = "NK|CD8. Tem", |
|
|
100 |
colors.group=colors.group, max.y = 1) |
|
|
101 |
|
|
|
102 |
ggsave(plot = p1, filename = "Figure3H_CTL_NK_proportion.pdf", width = 1.5, height = 2) |
|
|
103 |
# ggsave(plot = p2, filename = "TNK_proportion_Galen_AML.pdf", width = 6, height = 2) |
|
|
104 |
# ggsave(plot = p3, filename = "TNK_proportion_HCA_samples.pdf", width = 6, height = 2) |
|
|
105 |
ggsave(plot = p4, filename = "Figure3H_CTL_NK_proportion_HCA.pdf", width = 2, height = 2) |
|
|
106 |
|
|
|
107 |
#************************* Integrated analysis, these were plotted in the Figure3K ************************* |
|
|
108 |
load("markers.all.filt.allgenes.Rdata") # from above |
|
|
109 |
|
|
|
110 |
genes.up=fread("TableS3_Significant_genes_MDSlike_bulk.txt", data.table = F) |
|
|
111 |
|
|
|
112 |
MDSup=markers.all.filt[markers.all.filt$gene%in%genes.up&markers.all.filt$avg_logFC>0.25,] |
|
|
113 |
|
|
|
114 |
# interesting candidates from cellphonedb |
|
|
115 |
feats=c("KLRF1", "CLEC2B", "NCR3", "BAG6", "HAVCR2", "LGALS9", "TGFBR3", "TGFB1", "IFNGR1", "IFNGR2", "IFNG", "LAG3") |
|
|
116 |
|
|
|
117 |
# Check if significant in different category: |
|
|
118 |
blasts=feats%in%markers.all.filt$gene[grepl("MDS-like",markers.all.filt$cluster)&grepl("HSC|MPP|MEP|GMP|CMP|Monocyte",markers.all.filt$cluster)] |
|
|
119 |
NK=feats%in%markers.all.filt$gene[grepl("MDS-like",markers.all.filt$cluster)&grepl("CD8|NK",markers.all.filt$cluster)] |
|
|
120 |
bulk=feats%in%genes.up$Gene[genes.up$FDR<0.001] |
|
|
121 |
data.frame(feats, blasts, NK, bulk) |
|
|
122 |
|
|
|
123 |
pdf("Figure3K_CellPhoneDB.pdf", width = 25, height = 6) |
|
|
124 |
FeaturePlot(FIMM, c("KLRF1", "CLEC2B"), blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001, pt.size = 0.01, coord.fixed = F, sort.cell = T) |
|
|
125 |
FeaturePlot(FIMM, c("NCR3", "BAG6"), blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001, pt.size = 0.01, coord.fixed = F, sort.cell = T) |
|
|
126 |
FeaturePlot(FIMM, c("HAVCR2", "LGALS9"), blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001, pt.size = 0.01, coord.fixed = F, sort.cell = T) |
|
|
127 |
FeaturePlot(FIMM, c("TGFBR3", "TGFB1"), blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001, pt.size = 0.01, coord.fixed = F, sort.cell = T) |
|
|
128 |
dev.off() |
|
|
129 |
|
|
|
130 |
#************************************** Analysis of IFNG ******************************************* |
|
|
131 |
load("Combined_pathway_signatures_2017_filtered_robust.Rdata") |
|
|
132 |
add.scores=listA[grep("INTERFERON_GAMMA_SIGNALING", names(listA))] |
|
|
133 |
|
|
|
134 |
add.scores=append(add.scores, list("IFNG_Receptor"=c("IFNGR1", "IFNGR2"))) |
|
|
135 |
|
|
|
136 |
fm.f=GetAssayData(FIMM) |
|
|
137 |
|
|
|
138 |
gm.objects=do.call(rbind, lapply(seq(add.scores), function(i){ |
|
|
139 |
dat3=fm.f[rownames(fm.f)%in%add.scores[[i]],] |
|
|
140 |
gm=log2(t(apply(dat3, 2, gm_mean))) # done to normalized values |
|
|
141 |
rownames(gm)=names(add.scores)[i] |
|
|
142 |
return(gm) |
|
|
143 |
})) |
|
|
144 |
|
|
|
145 |
# also add to seurat object: |
|
|
146 |
for(i in seq(add.scores)){ |
|
|
147 |
FIMM[[names(add.scores)[i]]] <- gm.objects[i,] |
|
|
148 |
} |
|
|
149 |
|
|
|
150 |
pdf("Fig3K_IFNG_analysis.pdf", width = 25, height = 6) |
|
|
151 |
FeaturePlot(FIMM, c("IFNG", "IFNG_Receptor"), sort.cell = T, pt.size = 0.01, blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001) |
|
|
152 |
FeaturePlot(FIMM, c("IFNG_Receptor", "IFNG"), sort.cell = T, pt.size = 0.01, blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001) |
|
|
153 |
FeaturePlot(FIMM, c("INTERFERON_GAMMA_SIGNALING-REACTOME_MsigDB_c2", "IFNG"), sort.cell = T, pt.size = 0.01, blend = T, cols=c("red", "darkblue"), blend.threshold = 0.001) |
|
|
154 |
plot.DotPlot(FIMM, features = unique(c("IFNGR1", "IFNGR2","IFNG", "IFNG_Receptor", "INTERFERON_GAMMA_SIGNALING-REACTOME_MsigDB_c2", "CytolyticScore"))) |
|
|
155 |
dev.off() |
|
|
156 |
|
|
|
157 |
pdf("FigS3O_IFNG_analysis_vln.pdf", width = 5, height = 3) |
|
|
158 |
FIMM[["MDSlike"]]=ifelse(grepl("5897|3667|5249", FIMM[["batch"]][,1]), "MDS-like", "other") |
|
|
159 |
FIMM[["MDSlike"]][grepl("6333|6187", FIMM[["batch"]][,1]),1]="HLAII_CIITA_low" |
|
|
160 |
FIMM[["batch2"]]=factor(FIMM[["batch"]][,1], levels=c("5897", "3667", "5249", "5238", "5750", "6187", "6333", "6386")) |
|
|
161 |
VlnPlot(FIMM[,grepl("MPP|GMP|CMP|MEP|HSC", FIMM[["SingleR.label"]][,1])], c("IFNG_Receptor"), group.by = "MDSlike", log = F, pt.size = 0.1) |
|
|
162 |
VlnPlot(FIMM[,grepl("MPP|GMP|CMP|MEP|HSC", FIMM[["SingleR.label"]][,1])], c("INTERFERON_GAMMA_SIGNALING-REACTOME_MsigDB_c2"), group.by = "MDSlike", log = F, pt.size = 0) |
|
|
163 |
VlnPlot(FIMM[,grepl("MPP|GMP|CMP|MEP|HSC", FIMM[["SingleR.label"]][,1])], c("INTERFERON_GAMMA_SIGNALING-REACTOME_MsigDB_c2"), group.by = "batch2",cols = c(rep("darkgreen", 3), rep("orange", 5)), log = F, pt.size = 0) |
|
|
164 |
dev.off() |