--- a +++ b/README.md @@ -0,0 +1,87 @@ +# HistoTNet + +Pytorch source code for the paper: + + A. Genovese, M. S. Hosseini, V. Piuri, K. N. Plataniotis, and F. Scotti, + "Histopathological transfer learning for Acute Lymphoblastic Leukemia detection", + in Proc. of the 2021 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2021), + June 18-20, 2021, pp. 1-6. + ISBN: 978-1-6654-1249-0. [DOI: 10.1109/CIVEMSA52099.2021.9493677] + +Paper: + +https://ieeexplore.ieee.org/document/9493677 + +Project page: + +[https://iebil.di.unimi.it/cnnALL/index.htm](https://iebil.di.unimi.it/cnnALL/index.htm) + +Outline: + + +Citation: + + @InProceedings {civemsa21all, + author = {A. Genovese and M. S. Hosseini and V. Piuri and K. N. Plataniotis and F. Scotti}, + booktitle = {Proc. of the 2021 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2021)}, + title = {Histopathological transfer learning for Acute Lymphoblastic Leukemia detection}, + month = {June}, + day = {18-20}, + year = {2021},} + +Main files: + +- (1) PyTorch_HistoNet/pytorch_histonet.py: training/testing of the HistoNet; +- (2) PyTorch_HistoTNet/pytorch_histotnet.py: training/testing of the HistoTNet. + +Instructions: + +0) Install the required packages (see packages.txt) + +1) cd to "(1) PyTorch_HistoNet" and run "pytorch_histonet.py" to train the HistoNet on the ADP database, implemented according to the paper: + + Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos + "Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning" + Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756 + + Required files: + + - (1) PyTorch_HistoNet/db_orig/ADP/img_res_1um_bicubic/ <br/> + ADP database, split in patches, obtained following the instructions at: <br/> + https://www.dsp.utoronto.ca/projects/ADP/ <br/> + e.g., (1) PyTorch_HistoNet/db_orig/ADP/img_res_1um_bicubic/001.png_crop_16.png + + - (1) PyTorch_HistoNet/db_orig/ADP/ADP_EncodedLabels_Release1_Flat.csv + file containing the labels of the ADP database, obtained following the instructions at: <br/> + https://www.dsp.utoronto.ca/projects/ADP/ <br/> + +2) Copy the trained models in "(2) PyTorch_HistoTNet\pretrained_nets". +For simplicity, some trained models are already present. + +3) cd to "(2) PyTorch_HistoTNet" and run "pytorch_histotnet.py" to train the HistoTNet on the ALL-IDB database for Acute Lymphoblastic Leukemia detection. + + Required files: + + - (2) PyTorch_HistoTNet/db/ALL_IDB2 <br/> + ALL-IDB database, obtained following the instructions at: + https://homes.di.unimi.it/scotti/all/ + e.g., (2) PyTorch_HistoTNet/db/ALL_IDB2/Im001_1.tif + +The databases used in the paper can be obtained at: + +- Atlas of Digital Pathology (ADP)<br/> +https://www.dsp.utoronto.ca/projects/ADP/ + + Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos + "Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning" + Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756 + +- Acute Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB) <br/> +https://homes.di.unimi.it/scotti/all/ + + R. Donida Labati, V. Piuri, F. Scotti + "ALL-IDB: the acute lymphoblastic leukemia image database for image processing" + in Proc. of the 2011 IEEE Int. Conf. on Image Processing (ICIP 2011), + Brussels, Belgium, pp. 2045-2048, September 11-14, 2011. + ISBN: 978-1-4577-1302-6. [DOI: 10.1109/ICIP.2011.6115881] +