|
a |
|
b/README.md |
|
|
1 |
# HistoTNet |
|
|
2 |
|
|
|
3 |
Pytorch source code for the paper: |
|
|
4 |
|
|
|
5 |
A. Genovese, M. S. Hosseini, V. Piuri, K. N. Plataniotis, and F. Scotti, |
|
|
6 |
"Histopathological transfer learning for Acute Lymphoblastic Leukemia detection", |
|
|
7 |
in Proc. of the 2021 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2021), |
|
|
8 |
June 18-20, 2021, pp. 1-6. |
|
|
9 |
ISBN: 978-1-6654-1249-0. [DOI: 10.1109/CIVEMSA52099.2021.9493677] |
|
|
10 |
|
|
|
11 |
Paper: |
|
|
12 |
|
|
|
13 |
https://ieeexplore.ieee.org/document/9493677 |
|
|
14 |
|
|
|
15 |
Project page: |
|
|
16 |
|
|
|
17 |
[https://iebil.di.unimi.it/cnnALL/index.htm](https://iebil.di.unimi.it/cnnALL/index.htm) |
|
|
18 |
|
|
|
19 |
Outline: |
|
|
20 |
 |
|
|
21 |
|
|
|
22 |
Citation: |
|
|
23 |
|
|
|
24 |
@InProceedings {civemsa21all, |
|
|
25 |
author = {A. Genovese and M. S. Hosseini and V. Piuri and K. N. Plataniotis and F. Scotti}, |
|
|
26 |
booktitle = {Proc. of the 2021 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2021)}, |
|
|
27 |
title = {Histopathological transfer learning for Acute Lymphoblastic Leukemia detection}, |
|
|
28 |
month = {June}, |
|
|
29 |
day = {18-20}, |
|
|
30 |
year = {2021},} |
|
|
31 |
|
|
|
32 |
Main files: |
|
|
33 |
|
|
|
34 |
- (1) PyTorch_HistoNet/pytorch_histonet.py: training/testing of the HistoNet; |
|
|
35 |
- (2) PyTorch_HistoTNet/pytorch_histotnet.py: training/testing of the HistoTNet. |
|
|
36 |
|
|
|
37 |
Instructions: |
|
|
38 |
|
|
|
39 |
0) Install the required packages (see packages.txt) |
|
|
40 |
|
|
|
41 |
1) cd to "(1) PyTorch_HistoNet" and run "pytorch_histonet.py" to train the HistoNet on the ADP database, implemented according to the paper: |
|
|
42 |
|
|
|
43 |
Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos |
|
|
44 |
"Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning" |
|
|
45 |
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756 |
|
|
46 |
|
|
|
47 |
Required files: |
|
|
48 |
|
|
|
49 |
- (1) PyTorch_HistoNet/db_orig/ADP/img_res_1um_bicubic/ <br/> |
|
|
50 |
ADP database, split in patches, obtained following the instructions at: <br/> |
|
|
51 |
https://www.dsp.utoronto.ca/projects/ADP/ <br/> |
|
|
52 |
e.g., (1) PyTorch_HistoNet/db_orig/ADP/img_res_1um_bicubic/001.png_crop_16.png |
|
|
53 |
|
|
|
54 |
- (1) PyTorch_HistoNet/db_orig/ADP/ADP_EncodedLabels_Release1_Flat.csv |
|
|
55 |
file containing the labels of the ADP database, obtained following the instructions at: <br/> |
|
|
56 |
https://www.dsp.utoronto.ca/projects/ADP/ <br/> |
|
|
57 |
|
|
|
58 |
2) Copy the trained models in "(2) PyTorch_HistoTNet\pretrained_nets". |
|
|
59 |
For simplicity, some trained models are already present. |
|
|
60 |
|
|
|
61 |
3) cd to "(2) PyTorch_HistoTNet" and run "pytorch_histotnet.py" to train the HistoTNet on the ALL-IDB database for Acute Lymphoblastic Leukemia detection. |
|
|
62 |
|
|
|
63 |
Required files: |
|
|
64 |
|
|
|
65 |
- (2) PyTorch_HistoTNet/db/ALL_IDB2 <br/> |
|
|
66 |
ALL-IDB database, obtained following the instructions at: |
|
|
67 |
https://homes.di.unimi.it/scotti/all/ |
|
|
68 |
e.g., (2) PyTorch_HistoTNet/db/ALL_IDB2/Im001_1.tif |
|
|
69 |
|
|
|
70 |
The databases used in the paper can be obtained at: |
|
|
71 |
|
|
|
72 |
- Atlas of Digital Pathology (ADP)<br/> |
|
|
73 |
https://www.dsp.utoronto.ca/projects/ADP/ |
|
|
74 |
|
|
|
75 |
Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos |
|
|
76 |
"Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning" |
|
|
77 |
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756 |
|
|
78 |
|
|
|
79 |
- Acute Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB) <br/> |
|
|
80 |
https://homes.di.unimi.it/scotti/all/ |
|
|
81 |
|
|
|
82 |
R. Donida Labati, V. Piuri, F. Scotti |
|
|
83 |
"ALL-IDB: the acute lymphoblastic leukemia image database for image processing" |
|
|
84 |
in Proc. of the 2011 IEEE Int. Conf. on Image Processing (ICIP 2011), |
|
|
85 |
Brussels, Belgium, pp. 2045-2048, September 11-14, 2011. |
|
|
86 |
ISBN: 978-1-4577-1302-6. [DOI: 10.1109/ICIP.2011.6115881] |
|
|
87 |
|