a b/README.md
1
# HistoTNet
2
3
Pytorch source code for the paper:
4
5
    A. Genovese, M. S. Hosseini, V. Piuri, K. N. Plataniotis, and F. Scotti, 
6
    "Histopathological transfer learning for Acute Lymphoblastic Leukemia detection", 
7
    in Proc. of the 2021 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2021), 
8
    June 18-20, 2021, pp. 1-6. 
9
    ISBN: 978-1-6654-1249-0. [DOI: 10.1109/CIVEMSA52099.2021.9493677]
10
    
11
Paper:
12
13
https://ieeexplore.ieee.org/document/9493677
14
    
15
Project page:
16
17
[https://iebil.di.unimi.it/cnnALL/index.htm](https://iebil.di.unimi.it/cnnALL/index.htm)
18
    
19
Outline:
20
![Outline](https://iebil.di.unimi.it/cnnALL/imgs/outline_civemsa21all.jpg "Outline")
21
22
Citation:
23
24
    @InProceedings {civemsa21all,
25
    author = {A. Genovese and M. S. Hosseini and V. Piuri and K. N. Plataniotis and F. Scotti},
26
    booktitle = {Proc. of the 2021 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2021)},
27
    title = {Histopathological transfer learning for Acute Lymphoblastic Leukemia detection},
28
    month = {June},
29
    day = {18-20},
30
    year = {2021},}
31
32
Main files:
33
34
- (1) PyTorch_HistoNet/pytorch_histonet.py: training/testing of the HistoNet;
35
- (2) PyTorch_HistoTNet/pytorch_histotnet.py: training/testing of the HistoTNet.
36
37
Instructions:
38
39
0) Install the required packages (see packages.txt)
40
41
1) cd to "(1) PyTorch_HistoNet" and run "pytorch_histonet.py" to train the HistoNet on the ADP database, implemented according to the paper:
42
43
    Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos
44
    "Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning"
45
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756
46
    
47
    Required files:
48
    
49
    - (1) PyTorch_HistoNet/db_orig/ADP/img_res_1um_bicubic/ <br/>
50
    ADP database, split in patches, obtained following the instructions at: <br/>
51
    https://www.dsp.utoronto.ca/projects/ADP/ <br/>
52
    e.g., (1) PyTorch_HistoNet/db_orig/ADP/img_res_1um_bicubic/001.png_crop_16.png
53
    
54
    - (1) PyTorch_HistoNet/db_orig/ADP/ADP_EncodedLabels_Release1_Flat.csv
55
    file containing the labels of the ADP database, obtained following the instructions at: <br/>
56
    https://www.dsp.utoronto.ca/projects/ADP/ <br/>
57
    
58
2) Copy the trained models in "(2) PyTorch_HistoTNet\pretrained_nets".
59
For simplicity, some trained models are already present.
60
    
61
3) cd to "(2) PyTorch_HistoTNet" and run "pytorch_histotnet.py" to train the HistoTNet on the ALL-IDB database for Acute Lymphoblastic Leukemia detection.
62
    
63
    Required files:
64
    
65
    - (2) PyTorch_HistoTNet/db/ALL_IDB2 <br/>
66
    ALL-IDB database, obtained following the instructions at:
67
    https://homes.di.unimi.it/scotti/all/
68
    e.g., (2) PyTorch_HistoTNet/db/ALL_IDB2/Im001_1.tif
69
    
70
The databases used in the paper can be obtained at:
71
72
- Atlas of Digital Pathology (ADP)<br/>
73
https://www.dsp.utoronto.ca/projects/ADP/
74
75
    Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos
76
    "Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning"
77
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756
78
79
- Acute Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB) <br/>
80
https://homes.di.unimi.it/scotti/all/
81
82
    R. Donida Labati, V. Piuri, F. Scotti
83
    "ALL-IDB: the acute lymphoblastic leukemia image database for image processing"
84
    in Proc. of the 2011 IEEE Int. Conf. on Image Processing (ICIP 2011), 
85
    Brussels, Belgium, pp. 2045-2048, September 11-14, 2011. 
86
    ISBN: 978-1-4577-1302-6. [DOI: 10.1109/ICIP.2011.6115881]
87