[28aa3b]: / R / cleanMetadata.GSE10846.R

Download this file

147 lines (113 with data), 6.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#' @rdname cleanMetadata
#' @details
#' GSE10846:\cr
#' The cleanup of GSE10846 (LLMPP) adds two batches corresponding to each
#' the CHOP and the R-CHOP cohort.
#' @export
cleanMetadata.GSE10846 <- function(meta_data) {
message("Cleaning GSE10846 (LLMPP)!")
# Generic clean
suppressMessages(meta_data <- cleanMetadata.data.frame(meta_data))
stopifnot(requireNamespace("survival"))
# Helper functions
wo.na <- function(x) sum(x[!is.na(x)])
n.is.na <- function(x) sum(is.na(x))
IPI <- function(age, ECOG, stage, No.Extra.Nodal, LDH) {
a <- ifelse(age > 60, 1, 0)
b <- ifelse(ECOG > 1, 1, 0)
c <- ifelse(No.Extra.Nodal >= 2, 1, 0)
d <- ifelse(stage > 2, 1, 0)
e <- ifelse(LDH > 1, 1, 0)
ipi <- data.frame(a = a, b = b, c = c, d = d, e = e)
score <- apply(ipi, 1, sum)
score2 <- apply(ipi, 1, wo.na)
n.NA <- apply(ipi, 1, n.is.na) == 1
n.NA2 <- apply(ipi, 1, n.is.na) == 2
ipi.hl <- rep(NA, length(n.NA))
ipi.hl[score %in% c(0, 1, 2)] <- 0
ipi.hl[score %in% c(3, 4, 5)] <- 1
ipi.hl2 <- rep(NA, length(n.NA))
ipi.hl2[score2 %in% c(0, 1, 2)] <- 0
ipi.hl2[score2 %in% c(3, 4, 5)] <- 1
ipi.hl[n.NA & score2 %in% c(0, 1, 3, 4) ] <-
ipi.hl2[n.NA & score2 %in% c(0, 1, 3, 4) ]
ipi.hl[n.NA2 & score2 %in% c(0, 3) ] <-
ipi.hl2[n.NA2 & score2 %in% c(0, 3) ]
return(list(ipi = score, ipi.hl = ipi.hl, na.1 = n.NA, ipi.na = score2))
}
metadata <- apply(meta_data, 2, as.character)
metadata <- as.data.frame(metadata[1:414, ], stringsAsFactors = FALSE)
GEO.ID <- metadata$geo_accession
id <- gsub("Individual: ", "", metadata$source_name_ch1)
gender <- gsub("Gender: ", "", metadata$characteristics_ch1)
age <- gsub("Age: ", "", metadata$characteristics_ch1.1)
tissue <- gsub("Tissue: ", "", metadata$characteristics_ch1.2)
disease.state <- gsub("Disease state: ",
"", metadata$characteristics_ch1.3)
Submitting.diagnosis <- gsub("Clinical info: Submitting diagnosis: ",
"", metadata$characteristics_ch1.5)
microarray.diagnosis <- gsub("Clinical info: Final microarray diagnosis: ",
"", metadata$characteristics_ch1.6)
microarray.diagnosis <- gsub(" DLBCL", "", microarray.diagnosis)
status <- gsub("Clinical info: Follow up status: ",
"", metadata$characteristics_ch1.7)
FU <- gsub("Clinical info: Follow up years: ",
"", metadata$characteristics_ch1.8)
chemo <- gsub("Clinical info: Chemotherapy: ",
"", metadata$characteristics_ch1.9)
chemo <- gsub("-Like Regimen", "", chemo)
ECOG <- gsub("Clinical info: ECOG performance status: ",
"", metadata$characteristics_ch1.10)
stage <- gsub("Clinical info: Stage: ",
"", metadata$characteristics_ch1.11)
LDH <- gsub("Clinical info: LDH ratio: ",
"", metadata$characteristics_ch1.12)
No.Extra.Nodal <- gsub("Clinical info: Number of extranodal sites: ",
"", metadata$characteristics_ch1.13)
metadataLLMPP <- data.frame(id, GEO.ID, gender, as.numeric(age), status,
FU, chemo, tissue,
disease.state, Submitting.diagnosis,
microarray.diagnosis, ECOG, stage, LDH,
No.Extra.Nodal = No.Extra.Nodal)
colnames(metadataLLMPP) <- c("id", "GEO.ID", "gender", "age",
"survival.status", "FU", "chemo", "tissue",
"disease.state", "Submitting.diagnosis",
"microarray.diagnosis", "ECOG", "stage",
"LDH", "No.Extra.Nodal")
metadataLLMPP$FU <- as.numeric(as.character(metadataLLMPP$FU))
metadataLLMPP$stage <- as.numeric(as.character(metadataLLMPP$stage))
metadataLLMPP$age <- as.numeric(as.character(metadataLLMPP$age))
metadataLLMPP$No.Extra.Nodal <- as.numeric(as.character(metadataLLMPP$No.Extra.Nodal))
metadataLLMPP$ECOG <- as.numeric(as.character(metadataLLMPP$ECOG))
metadataLLMPP$LDH <- as.numeric(as.character(metadataLLMPP$LDH))
ipi <- IPI(metadataLLMPP$age, metadataLLMPP$ECOG,
metadataLLMPP$stage, metadataLLMPP$No.Extra.Nodal,
metadataLLMPP$LDH)
metadataLLMPP$ipi <- as.factor(ipi$ipi)
metadataLLMPP$ipi.hl <- as.factor(ipi$ipi.hl)
metadataLLMPP$ipi.hl <- as.character(metadataLLMPP$ipi)
metadataLLMPP$ipi.hl[metadataLLMPP$ipi %in% c(0, 1)] <- "0-1"
metadataLLMPP$ipi.hl[metadataLLMPP$ipi %in% c(2, 3)] <- "2-3"
metadataLLMPP$ipi.hl[metadataLLMPP$ipi %in% c(4, 5)] <- "4-5"
metadataLLMPP$ipi.hl2 <- metadataLLMPP$ipi.hl
metadataLLMPP$ipi.hl2[ipi$ipi.na == 0 & ipi$na.1] <- "0-1"
metadataLLMPP$ipi.hl2[ipi$ipi.na == 2 & ipi$na.1] <- "2-3"
metadataLLMPP$ipi.hl2[ipi$ipi.na == 4 & ipi$na.1] <- "4-5"
# Creating survival objects
metadataLLMPP$OS <- survival::Surv(metadataLLMPP$FU,
metadataLLMPP$survival.status == "DEAD")
os5 <- ifelse(metadataLLMPP$FU > 5, 5, metadataLLMPP$FU)
ios5 <- pmin(ifelse(metadataLLMPP$FU > 5, 0, 1), metadataLLMPP$OS[,2])
metadataLLMPP$OS5 <- survival::Surv(as.numeric(os5), ios5)
metadataLLMPP$WrightClass <- metadataLLMPP$microarray.diagnosis
metadataLLMPP$WrightClass2 <- as.character(metadataLLMPP$WrightClass)
metadataLLMPP$WrightClass2 <-
as.factor(gsub("Unclassified", "UC", metadataLLMPP$WrightClass2))
rownames(metadataLLMPP) <- paste(metadataLLMPP$GEO.ID, ".CEL",sep = "")
# Added factor describing the batches and CEL files
metadataLLMPP$Batch <- as.factor(metadataLLMPP$chemo)
metadataLLMPP$CEL <- rownames(metadataLLMPP)
metadataLLMPP$GSM <- as.character(metadataLLMPP$GEO.ID)
class(metadataLLMPP) <- class(meta_data)
return(metadataLLMPP)
}