|
a |
|
b/R/cleanMetadata.GSE31312.R |
|
|
1 |
#' @rdname cleanMetadata |
|
|
2 |
#' @details |
|
|
3 |
#' GSE31312:\cr |
|
|
4 |
#' This function makes the samples GSM776068, GSM776149, and GSM776462 to be |
|
|
5 |
#' left out of the downstream preprocessing due to bad array quality. |
|
|
6 |
#' @export |
|
|
7 |
cleanMetadata.GSE31312 <- function(meta_data) { |
|
|
8 |
message("Cleaning GSE31312 (IDRC)!") |
|
|
9 |
|
|
|
10 |
# Generic clean |
|
|
11 |
suppressMessages(meta_data <- cleanMetadata.data.frame(meta_data)) |
|
|
12 |
|
|
|
13 |
# Added factor describing the batches and CEL files |
|
|
14 |
exclude <- c("GSM776068", "GSM776149", "GSM776462") |
|
|
15 |
meta_data$Batch <- |
|
|
16 |
factor(ifelse(rownames(meta_data) %in% exclude, NA, "Batch1")) |
|
|
17 |
meta_data$CEL <- rownames(meta_data) |
|
|
18 |
meta_data$GSM <- as.character(meta_data$geo_accession) |
|
|
19 |
|
|
|
20 |
return(meta_data) |
|
|
21 |
} |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
# meta_data$Array.Data.File <- |
|
|
25 |
# as.character( |
|
|
26 |
# meta_data_old[as.character(meta_data$GEO.Depository..31312), |
|
|
27 |
# "Array.Data.File" ]) |
|
|
28 |
# |
|
|
29 |
# meta_data <- meta_data[!is.na(meta_data$Array.Data.File),] |
|
|
30 |
# |
|
|
31 |
# meta_data$WrightClass2 <- |
|
|
32 |
# meta_data$GEP.Classification |
|
|
33 |
# meta_data$WrightClass <- as.character(meta_data$WrightClass2) |
|
|
34 |
# meta_data$WrightClass <- |
|
|
35 |
# as.factor(gsub("UC", "Unclassified", meta_data$WrightClass)) |
|
|
36 |
# |
|
|
37 |
# # Creating survival objects |
|
|
38 |
# |
|
|
39 |
# meta_data$OS <- meta_data$OS / 12 |
|
|
40 |
# meta_data$PFS <- meta_data$PFS / 12 |
|
|
41 |
# |
|
|
42 |
# meta_data$OScensor <- ifelse(meta_data$OScensor == 1, 0, 1) |
|
|
43 |
# meta_data$PFScensor <- ifelse(meta_data$PFScensor == 1, 0, 1) |
|
|
44 |
# |
|
|
45 |
# meta_data$OS<- Surv(as.numeric(meta_data$OS), meta_data$OScensor) |
|
|
46 |
# |
|
|
47 |
# os5 <- ifelse(meta_data$OS[,1] > 5, 5, meta_data$OS[,1]) |
|
|
48 |
# ios5 <- pmin(ifelse(meta_data$OS[,1] > 5, 0, 1), meta_data$OS[,2]) |
|
|
49 |
# |
|
|
50 |
# meta_data$OS5 <- Surv(as.numeric(os5), ios5) |
|
|
51 |
# |
|
|
52 |
# meta_data$PFS<- Surv(as.numeric(meta_data$PFS), meta_data$PFScensor) |
|
|
53 |
# |
|
|
54 |
# PFS5 <- ifelse(meta_data$PFS[,1] > 5, 5, meta_data$PFS[,1]) |
|
|
55 |
# iPFS5 <- pmin(ifelse(meta_data$PFS[,1] > 5, 0, 1), meta_data$PFS[,2]) |
|
|
56 |
# |
|
|
57 |
# meta_data$PFS5 <- Surv(as.numeric(PFS5), iPFS5) |
|
|
58 |
# @ |
|
|
59 |
# |
|
|
60 |
# <<>>= |
|
|
61 |
# meta_data$ipi.hl <- NA |
|
|
62 |
# meta_data$ipi.hl[meta_data$IPI.score %in% c(0,1)] <- "0-1" |
|
|
63 |
# meta_data$ipi.hl[meta_data$IPI.score %in% c(2,3)] <- "2-3" |
|
|
64 |
# meta_data$ipi.hl[meta_data$IPI.score %in% c(4,5)] <- "4-5" |
|
|
65 |
# meta_data$ipi.hl <- as.factor(meta_data$ipi.hl) |
|
|
66 |
# table(meta_data$ipi.hl, meta_data$IPI.score) |
|
|
67 |
# |
|
|
68 |
# meta_data$age <- meta_data$Age |