Switch to unified view

a b/R/cleanMetadata.GSE31312.R
1
#' @rdname cleanMetadata
2
#' @details
3
#'    GSE31312:\cr
4
#'    This function makes the samples GSM776068, GSM776149, and GSM776462 to be
5
#'    left out of the downstream preprocessing due to bad array quality.
6
#' @export
7
cleanMetadata.GSE31312 <- function(meta_data) {
8
  message("Cleaning GSE31312 (IDRC)!")
9
10
  # Generic clean
11
  suppressMessages(meta_data <- cleanMetadata.data.frame(meta_data))
12
13
  # Added factor describing the batches and CEL files
14
  exclude <- c("GSM776068", "GSM776149", "GSM776462")
15
  meta_data$Batch <-
16
    factor(ifelse(rownames(meta_data) %in% exclude, NA, "Batch1"))
17
  meta_data$CEL <- rownames(meta_data)
18
  meta_data$GSM <- as.character(meta_data$geo_accession)
19
20
  return(meta_data)
21
}
22
23
24
# meta_data$Array.Data.File <-
25
#   as.character(
26
#     meta_data_old[as.character(meta_data$GEO.Depository..31312),
27
#                      "Array.Data.File" ])
28
#
29
# meta_data <- meta_data[!is.na(meta_data$Array.Data.File),]
30
#
31
# meta_data$WrightClass2 <-
32
#   meta_data$GEP.Classification
33
# meta_data$WrightClass <- as.character(meta_data$WrightClass2)
34
# meta_data$WrightClass <-
35
#   as.factor(gsub("UC", "Unclassified", meta_data$WrightClass))
36
#
37
#   # Creating survival objects
38
#
39
#   meta_data$OS  <- meta_data$OS  / 12
40
#   meta_data$PFS <- meta_data$PFS / 12
41
#
42
# meta_data$OScensor <- ifelse(meta_data$OScensor == 1, 0, 1)
43
# meta_data$PFScensor <- ifelse(meta_data$PFScensor == 1, 0, 1)
44
#
45
# meta_data$OS<- Surv(as.numeric(meta_data$OS), meta_data$OScensor)
46
#
47
# os5  <- ifelse(meta_data$OS[,1] > 5, 5, meta_data$OS[,1])
48
# ios5 <- pmin(ifelse(meta_data$OS[,1] > 5, 0, 1), meta_data$OS[,2])
49
#
50
# meta_data$OS5 <- Surv(as.numeric(os5), ios5)
51
#
52
# meta_data$PFS<- Surv(as.numeric(meta_data$PFS), meta_data$PFScensor)
53
#
54
# PFS5  <- ifelse(meta_data$PFS[,1] > 5, 5, meta_data$PFS[,1])
55
# iPFS5 <- pmin(ifelse(meta_data$PFS[,1] > 5, 0, 1), meta_data$PFS[,2])
56
#
57
# meta_data$PFS5 <- Surv(as.numeric(PFS5), iPFS5)
58
# @
59
#
60
#   <<>>=
61
#   meta_data$ipi.hl <- NA
62
# meta_data$ipi.hl[meta_data$IPI.score %in% c(0,1)] <- "0-1"
63
# meta_data$ipi.hl[meta_data$IPI.score %in% c(2,3)] <- "2-3"
64
# meta_data$ipi.hl[meta_data$IPI.score %in% c(4,5)] <- "4-5"
65
# meta_data$ipi.hl <- as.factor(meta_data$ipi.hl)
66
# table(meta_data$ipi.hl, meta_data$IPI.score)
67
#
68
# meta_data$age <- meta_data$Age