[6e90e5]: / code_final / ctcl_visium_figures.R

Download this file

379 lines (363 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#!/usr/bin/env R
# ------------------------------------------------------------------------------
# title: Spatial analysis of CTCL data.
# purpose: This script creates visium figures for the CTCL project.
# It takes the cell2location output.
# created: 2024-07-16 Tue 14:11:45 BST
# updated: 2024-08-02 Fri 13:23:37 BST
# version: 0.0.9
# status: Prototype
#
# maintainer: Ciro Ramírez-Suástegui
# author:
# - name: Ciro Ramírez-Suástegui
# affiliation: The Wellcome Sanger Institute
# email: cs59@sanger.ac.uk, cramsuig@gmail.com
# contributor:
# - name: Pasha Mazin
# affiliation: The Wellcome Sanger Institute
# email: pm19@sanger.ac.uk
# ------------------------------------------------------------------------------
## Environment setup ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Dependencies: functions and packages
# basic ----------------------------------------------------
library(plyr)
if (requireNamespace("crayon", quietly = TRUE)) {
red <- crayon::red
yellow <- crayon::yellow
cyan <- crayon::cyan
}else{
red <- yellow <- cyan = c
}
logging::basicConfig()
section = function (i, tail_n = 60, color = cyan) {
tail_n <- max(c(tail_n, nchar(i) + 1))
y <- paste("##", color(i), "##", base::strrep("%", tail_n-nchar(i)), "\n")
logging::loginfo(y)
}
# tools ----------------------------------------------------
library(Seurat)
library(NMF)
library(visutils)
# in-house/developing --------------------------------------
source(paste0(here::here(), "/code/visutils.R"))
## Global variables and paths ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data_dir <- "/nfs/cellgeni/pasham/projects/2211.adult.skin/data.nfs"
figures_dir <- paste0(here::here(), "/figures/ctcl_visium")
# CTCL as reference, original results
c2l_file <- paste0(data_dir, "/visium/ctcl/c2l.v2.rds")
sufix <- "ref-ctcl_original"
# CTCL as reference
c2l_file <- paste0(here::here(), "/results/ref_ctcl-viss_ctcl_disease.20/predmodel")
sufix <- "ref-ctcl"
# CTCL+Healthy as reference
c2l_file <- paste0(
here::here(), c("/results/ref_ctcl_h-viss_ctcl_all.20/predmodel",
"/results/ref_ctcl_h-viss_bayanne_healthy.20/predmodel"))
sufix <- "ref-ctcl-h"
{ section("Loading data") ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c2l <- unlist(lapply(c2l_file, function(x){
if (grepl("rds$", x)){
y <- readRDS(x)
split.data.frame(y, splitSub(rownames(y), "|", 1))
}else loadC2L(x)
}), recursive = FALSE)
logging::loginfo("Filtering to just the tissue and enhancing images")
visium <- lapply(
X = readRDS(paste0(data_dir, "/visium/ctcl/vs.v2.rds")),
function(v){
y <- v[, v$is.tissue == 1]
y@images$slice1@image <- enhanceImage( # More contrasted images
y@images$slice1@image, wb = TRUE, qs = c(0.1, 0.9)
)
return(y)
})
mdata <- readRDS(paste0(data_dir, "/visium/ctcl/meta.v2.rds"))
}
## Pre-processing ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
{
samples_subset <- intersect(
grep("CTCL|WS_D", names(visium), value = TRUE),
grep("CTCL|WS_D", names(visium), value = TRUE)
)
# Setting up cell type colours
ct_color <- c(
"Tumour cell" = "#E41A1C",
"F3" = "#377EB8",
"F2" = "#4DAF4A",
"B cell" = "#FF7F00",
"MoDC3" = "#F781BF",
"VE3" = "#984EA3",
"DC2" = "#be5ff5"
)
for (i in grep("Healthy", names(ct_color), value = TRUE, invert = TRUE)) {
ct_color[paste("Healthy", i)] <- grDevices::adjustcolor(
ct_color[i], alpha.f = 0.3
)
}
logging::loginfo("Matching cell names")
# tumourcell > tumor_cell
# MoDC3 > moDC_3
# B/plasma > B_cell
ct_names = setNames(nm = unique(unlist(lapply(c2l, colnames))))
ct_names["tumor_cell"] <- "Tumour cell"
ct_names["moDC_3"] <- "MoDC3"
ct_names["B_cell"] <- "B cell"
for (sample_i in samples_subset) {
cellnames <- colnames(visium[[sample_i]])
rownames(c2l[[sample_i]]) <- gsub(".*\\|", "", rownames(c2l[[sample_i]]))
cellint <- intersect(cellnames, rownames(c2l[[sample_i]]))
logging::loginfo(paste0(
sample_i, ": ", length(cellint), "/(c2l:",
nrow(c2l[[sample_i]]), ",vis:", length(cellnames), ")"
))
if (length(cellnames) > 0) {
c2l[[sample_i]] <- c2l[[sample_i]][cellnames, ]
}
colnames(c2l[[sample_i]]) <- ct_names[colnames(c2l[[sample_i]])]
}
# trend line and NMF need the matrix with everything together
c2lm <- as.data.frame(do.call(rbind, lapply(X = samples_subset, function(x){
y <- c2l[[x]]; rownames(y) <- paste0(x, ".", rownames(y)); y
})))
# visium[["HCA_sCTCL13876503"]] <- rotateVisium(
# visium[["HCA_sCTCL13876503"]], n = 1, mirror = TRUE
# )
}
## Main ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
{ section("Microenvironments (NMF analysis)") ## %%%%%%%%%%%
c2lmt = as.matrix(c2lm)
# we will use per-spot normalised celltype abundancies
c2lmt = sweep(c2lmt, 1, rowSums(c2lmt), '/')
# we will run nmf N times to assess results stability
N = 50 # consider to increase it
# number of factors is almost arbitrary and to be set manually depending
# on desired granularity of microenvironments.
for (rank in c(4, 5, 6)) {
p_name = paste0(file.path(
figures_dir, paste(
"mfigure1f",
paste(c("nmf", rank, "microenvironments"), collapse="-"),
sufix, sep="_"
)
), ".pdf")
logging::loginfo(paste(basename(p_name)))
start <- Sys.time()
set.seed(1234)
doMC::registerDoMC(2)
nmf = plyr::llply(
.data = 1:N,
.fun = function(i){
nmf(c2lmt, rank = rank)
}, .parallel = TRUE
)
logging::loginfo(paste("Elapsed:", format(difftime(Sys.time(), start, unit="min"))))
best.nmf = nmfGetBest(nmf, getNMFNormFs('max'))
# plotting
pdf(gsub(".pdf", "_summary.pdf", p_name), w = 7-2, h = 7+2)
plotNMFConsSummary(best.nmf$coefn, best.nmf$cons/N, ylab.cex = 0.7, max.cex = 2)
dev.off()
pdf(p_name, w = 7+5, h = 7+3)
plotNMFCons(best.nmf$coefn, best.nmf$cons/N, ylab.cex = 0.7, max.cex = 2)
dev.off()
}
}
# Configuring data going into each figure
fconfigs <- list(
list(
name = "mfigure3d",
celltypes = c("Tumour cell", "VE3"), # F3
samples = c("5" = "HCA_sCTCL13876505", "4" = "HCA_sCTCL13876504")
),
list(
name = "mfigure3j",
celltypes = c("Tumour cell", "DC2"), # MoDC3
samples = c("7" = "HCA_sCTCL13787193", "4" = "HCA_sCTCL13876504")
),
list(
name = "mfigure3j",
celltypes = c("Tumour cell", "DC2", "MoDC3"),
samples = c("7" = "HCA_sCTCL13787193", "4" = "HCA_sCTCL13876504")
),
list(
name = "mfigure4d",
celltypes = c("Tumour cell", "B cell"),
samples = c("5" = "HCA_sCTCL13876505", "8" = "HCA_sCTCL13787192")
),
list(
name = "efigure4d", # efigure4f
celltypes = c(rep(list(c("Tumour cell", "F2")), 3), list(c("Tumour cell", "VE3"))),
samples = c(
"2" = "HCA_sCTCL13787190", "3" = "HCA_sCTCL13876502",
"1" = "HCA_sCTCL13787191", "2" = "HCA_sCTCL13787190"
)
),
list(
name = "efigure5d", # efigure5f
celltypes = c("Tumour cell", "DC2", "MoDC3"), # +DC2
samples = c("5" = "HCA_sCTCL13876505", "6" = "HCA_sCTCL13876503")
),
list(
name = "efigure6i",
celltypes = c("Tumour cell", "B cell"),
samples = c("2" = "HCA_sCTCL13787190", "3" = "HCA_sCTCL13876502")
),
list(
name = "xfigureNx",
celltypes = c("Tumour cell", "F2", "VE3"),
samples = c("7" = "HCA_sCTCL13787193", "4" = "HCA_sCTCL13876504")
),
list(
name = "xfigureNx", # efigure5f
celltypes = c("Tumour cell", "F2", "VE3"),
samples = c("5" = "HCA_sCTCL13876505", "6" = "HCA_sCTCL13876503")
),
list(
name = "efigure6i",
celltypes = c("Tumour cell", "F2", "VE3", "B cell", "MoDC3"),
samples = c("5" = "HCA_sCTCL13876505", "6" = "HCA_sCTCL13876503")
),
list(
name = "xfigureNx",
celltypes = c("Tumour cell", "F2", "VE3"),
samples = c(
"2" = "HCA_sCTCL13787190", "3" = "HCA_sCTCL13876502",
"1" = "HCA_sCTCL13787191", "2" = "HCA_sCTCL13787190"
)
)
)
{ section("Abudance plot on tissue image") ## %%%%%%%%%%%%%%
for (i in seq_along(fconfigs)) {
fconfigs[[i]]$he.grayscale = FALSE
fconfigs[[i]]$img.alpha = 0.2
fconfigs[[i]]$he.img.width = 300
}
for (fconfig in fconfigs) {
p_name = paste0(file.path(
figures_dir, paste(
fconfig$name, "spatial-abundance",
paste(make.names(unique(unlist(fconfig$celltypes))), collapse="-"),
paste(names(fconfig$samples), collapse="-"),
sufix, sep="_"
)
), ".pdf")
nrows <- ceiling(sqrt(length(fconfig$samples)))
ncols <- ceiling(length(fconfig$samples) / nrows)
# create folder
logging::loginfo(paste(basename(p_name), nrows, ncols))
pdf(p_name, w = ncols * 5, h = nrows * 3.5)
par(mfcol = c(nrows, ncols), mar = c(0, 0, 1, 10), bty = "n")
if (!is.list(fconfig$celltypes)) {
fconfig$celltypes <- list(fconfig$celltypes)
}
if (length(fconfig$celltypes) == 1) {
fconfig$celltypes <- rep(fconfig$celltypes, length(fconfig$samples))
}
for (index_i in seq_along(fconfig$samples)) {
sample_i <- fconfig$samples[index_i]
celltypes <- fconfig$celltypes[[index_i]]
ftitle <- paste0(
mdata[sample_i, "stage"], ": ",
mdata[sample_i, "donor_id"]
)
ct_proportions <- c2l[[sample_i]][colnames(visium[[sample_i]]), celltypes]
p <- plotVisiumMultyColours(
visium[[sample_i]], ct_proportions,
zfun = function(x) x^2, scale.per.colour = TRUE,
col = ct_color[colnames(ct_proportions)], mode = "mean",
he.grayscale = fconfig$he.grayscale, img.alpha = fconfig$img.alpha,
main = ftitle, legend.ncol = 2,
min.opacity=0
)
}
dev.off()
}
}
{ section("Abundance along dermis-epidermis axis") ## %%%%%%
# define distance ----------------------------------------
for (sample_i in samples_subset) {
d <- as.matrix(dist(
visium[[sample_i]]@images$slice1@coordinates[, c("imagerow", "imagecol")]
))
spot_dist <- min(d[upper.tri(d)])
visium[[sample_i]]$dist2junction <- -abs(
apply(d[, visium[[sample_i]]$is.surface], 1, min) / spot_dist
)
}
columns_l <- lapply(visium, function(x) colnames(x@meta.data) )
columns_u <- unique(unlist(columns_l))
columns_s <- sapply(columns_l, function(x) columns_u %in% x ) # shared columns
columns_u <- columns_u[rowSums(columns_s) == length(columns_l)]
spots <- as.data.frame(data.table::rbindlist(
lapply(samples_subset, function(x) visium[[x]]@meta.data[, columns_u] ))
)
rownames(spots) <- paste0(spots$sample_id, ".", spots$barcode)
# binarise the distance ----------------------------------
spots$dist2junction = round(as.numeric(spots$dist2surf))
# cor(spots$dist2junction, spots$dist2surf) # 0.9988894
# mean(spots$dist2junction == spots$dist2surf) # 0.06986634
# Calculating matrix with average ------------------------
# celltype abundances for each distance bin and each sample
dfsmtx.c2l = makeDistFeatureSampleTable(
dist = spots$dist2junction,
sample = spots$sample_id,
data = c2lm,
per.spot.norm = TRUE
)
# dfsmtx.c2l["0", fconfigs_trends[[1]]$celltypes[1], tail(unique(spots$sample_id), 1)]
# mean(c2lm_condition[, fconfigs_trends[[1]]$celltypes[1]])
fselect <- c("mfigure3d", "mfigure3j", "efigure5d", "mfigure4d", "xfigureNx")
fnames <- sapply(fconfigs, "[[", "name" )
temp <- sapply(fselect, function(x) min(which(fnames %in% x)) )
fconfigs_trends <- fconfigs[temp] # [c(1, 2, 4, 5)]
fconfigs_trends[[1]]$name = "mfigure3e"
fconfigs_trends[[2]]$name = "mfigure3k"
ftitle <- "All CTCL combined"
if (any(grepl("WS_D", samples_subset))) {
ftitle <- "CTCL vs Healthy"
for (i in seq_along(fconfigs_trends)) {
fconfigs_trends[[i]]$name <- paste0(fconfigs_trends[[i]]$name, "-healthy")
fconfigs_trends[[i]]$celltypes <- c(
fconfigs_trends[[i]]$celltypes,
paste("Healthy", grep("umour", fconfigs_trends[[i]]$celltypes, value = TRUE, invert = TRUE))
)
fconfigs_trends[[i]]$features_facet <- sapply(
X = fconfigs_trends[[i]]$celltypes,
FUN = function(x) {
if (any(grepl("Healthy", x))){
grep("WS_D", samples_subset, value = TRUE)
}else{
grep("CTCL", samples_subset, value = TRUE)
}
}, simplify = FALSE)
}
}
for (fconfig in fconfigs_trends) {
p_name = paste0(file.path(
figures_dir, paste(
fconfig$name, "trend-abundance",
paste(make.names(unique(unlist(fconfig$celltypes))), collapse="-"),
sufix, sep="_"
)
), ".pdf")
logging::loginfo(paste(basename(p_name)))
if (is.list(fconfig$celltypes)) next
pdf(p_name, w = 7-2, h = 7-3)
par(mar = c(4, 4, 2, 8), bty = "n")
plotFeatureProfiles_fun(
dfsmtx.c2l,
features = fconfig$celltypes,
features_facet = fconfig$features_facet,
cols = ct_color[fconfig$celltypes],
lwd = 5,
sd.mult = 1,
ylim = c(0, 1.3),
xlim = range(-15:0),
main = ftitle,
xlab = "Distance to surface interface (spots)",
)
dev.off()
}
}
## Conclusions ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
## Save ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%