[b8d756]: / Analysis_1.R

Download this file

704 lines (554 with data), 39.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
library(openxlsx)
library(plyr)
library(dplyr)
library(data.table)
library(caret)
library(cvTools)
## get the job ID
r <- as.numeric(Sys.getenv("SGE_TASK_ID"))
# r is the interger from 1 to 10
# the number of CV folds
cvRuns = 10
# load SNPs
load("SNPs_20171024.rda")
#==============
# input files
# file that contains information about blacklist mutations to exclude
#blacklistFile = "blacklist_from_July-17-2017.xlsx"
blacklistFile = "blacklist_from_October-23-2017.xlsx"
# file with WBC data
wbcFile = "WBC Mutations (Filtered + Optical Duplicates Removed + Q30), October 6, 2017.csv"
# file with plasmaSeq data to analyze
#plasmaSeqDataFile = "MEGA PlasmaSeq Data for Lu, Filtered Mutations (Optical Duplicates Removed + Q30) with PT and WBC Data, October 6, 2017.csv"
plasmaSeqDataFile = "MEGA PlasmaSeq Data for Lu, Filtered Mutations (Optical Duplicates Removed + Q30) with PT and WBC Data, December 8, 2017.csv"
#=================================
# START ANALYSIS
# blacklist mutations
blacklist = read.xlsx(blacklistFile, sheet = 1)
blacklist$mutID = paste(blacklist$Chrom,blacklist$Position,blacklist$BaseFrom,blacklist$BaseTo)
blacklist = blacklist$mutID
#==============
# WBC data from separate file
#==============
wbcDataFromFile = fread(wbcFile)
wbcDataFromFile = data.frame(wbcDataFromFile)
wbcDataFromFile = wbcDataFromFile[!(wbcDataFromFile$ampMatchName %in% amplicon),]
colnames(wbcDataFromFile)[c(20,14,17)] = c("TotalUID", "UID1","UID2")
## all plasma samples with matched WBC
matched = unique(wbcDataFromFile$Matched.Plasma)
matched = matched[!is.na(matched)]
wbcDataFromFile$mutID = paste(wbcDataFromFile$Chrom,wbcDataFromFile$Position,wbcDataFromFile$BaseFrom,wbcDataFromFile$BaseTo)
## deleting NA rows and snps from WBC mutations
wbcDataFromFile = wbcDataFromFile[!is.na(wbcDataFromFile$Position),]
wbcDataFromFile = wbcDataFromFile[!(wbcDataFromFile$mutID %in% snps),]
## remove duplicated row (same mutation in the same template)
wbcDataFromFile$remove = paste(wbcDataFromFile$Template,wbcDataFromFile$mutID)
dupPairs <- names(which(table(wbcDataFromFile$remove)>1))
newuniquenewnormal <- wbcDataFromFile%>%
filter(remove %in% dupPairs)%>%
group_by(remove)%>%
slice(which.max(TotalUID)) %>%
as.data.frame()
wbcDataFromFile <- rbind(newuniquenewnormal,
wbcDataFromFile%>%
filter(!(remove %in% dupPairs)))
wbcDataFromFile = data.frame(wbcDataFromFile)
## numeric columns
col = c("SM1","UID1","SM2","UID2","TotalSM","TotalUID")
wbcDataFromFile[,col] = apply(wbcDataFromFile[,col], 2, function(x) as.numeric(x))
wbcDataFromFile$maf1 = wbcDataFromFile$SM1/wbcDataFromFile$UID1
wbcDataFromFile$maf2 = wbcDataFromFile$SM2/wbcDataFromFile$UID2
############ if remove the requirement on the number of SM
## calculate number of positive wells defined more than 1 SM
wbcDataFromFile$Pwell = (wbcDataFromFile$SM1>1)+(wbcDataFromFile$SM2>1)
wbcDataFromFile = wbcDataFromFile[wbcDataFromFile$Pwell>=1,]
wbcDataFromFile = wbcDataFromFile[!is.na(wbcDataFromFile$Template),]
## average MAF
wbcDataFromFile$aveMAF = wbcDataFromFile$TotalSM/wbcDataFromFile$TotalUID
maf = c("maf1","maf2")
#wbcDataFromFile = wbcDataFromFile[wbcDataFromFile$TotalUID>=200,]
## use wbc without matched plasma as control, excluding N18s
training = wbcDataFromFile[is.na(wbcDataFromFile$Matched.Plasma), ]
training = training[training$Template!="N18",]
#training = training[!(training$mutID %in% blacklist),]
training$SM3 = training$SM4 = training$SM5 = training$SM6 = NA
training$UID3 = training$UID4 = training$UID5 = training$UID6 = NA
training$maf3 = training$maf4 = training$maf5 = training$maf6 = NA
## normal unmatched WBC mutations
training_wbc.nm = training
## plasma templates with matched WBC
valid = wbcDataFromFile[!is.na(wbcDataFromFile$Matched.Plasma),]
## setting MAF = 0 for wells with less than 100 UIDs
valid$maf1[valid$UID1<100] = 0
valid$maf2[valid$UID2<100] = 0
## unique mutations ID (Plasma Template, mutID)
valid$plsid = paste(valid$Matched.Plasma,valid$mutID)
## calculate maximum MAF in the two wells for each mutation in the plasma
## could use average, instead of max
maxinWBC = ddply(valid, .(plsid), summarise, max = max(maf1,maf2))
#=============
# Plasma Data
#=============
## read data from plasmas
plasmaData = fread(plasmaSeqDataFile)
plasmaData = data.frame(plasmaData)
plasmaData = plasmaData[!(plasmaData$ampMatchName %in% amplicon),]
colnames(plasmaData)[c(25,26,14,16,18,20,22,24)] = c("TotalSM","TotalUID", "UID1","UID2", "UID3","UID4","UID5","UID6")
plasmaData$mutID = paste(plasmaData$Chrom,plasmaData$Position,plasmaData$BaseFrom,plasmaData$BaseTo)
## deleting NA rows and snps
plasmaData = plasmaData[!is.na(plasmaData$Position),]
plasmaData = plasmaData[!(plasmaData$mutID %in% snps),]
## remove duplicated row (same mutation in the same template)
plasmaData$remove = paste(plasmaData$Template,plasmaData$mutID)
dupPairs <- names(which(table(plasmaData$remove)>1))
newuniquenewnormal <- plasmaData%>%
filter(remove %in% dupPairs)%>%
group_by(remove)%>%
slice(which.max(TotalUID)) %>%
as.data.frame()
data_corrected <- rbind(newuniquenewnormal,
plasmaData%>%
filter(!(remove %in% dupPairs)))
data_corrected = data.frame(data_corrected)
## numeric columns
col = c("SM1","UID1","SM2","UID2","SM3","UID3","SM4","UID4","SM5","UID5","SM6","UID6","TotalSM","TotalUID")
#colnames(data)[c(17,20,23,26,29,32)] = c("maf1","maf2","maf3","maf4","maf5","maf6")
## change to numeric
data_corrected[,col] = apply(data_corrected[,col], 2, function(x) as.numeric(x))
## calculate MAF
data_corrected$maf1 = data_corrected$SM1/data_corrected$UID1
data_corrected$maf2 = data_corrected$SM2/data_corrected$UID2
data_corrected$maf3 = data_corrected$SM3/data_corrected$UID3
data_corrected$maf4 = data_corrected$SM4/data_corrected$UID4
data_corrected$maf5 = data_corrected$SM5/data_corrected$UID5
data_corrected$maf6 = data_corrected$SM6/data_corrected$UID6
## mark as character
data_corrected$remove = as.character(data_corrected$remove)
## note some templates might only have 2 wells (like normal wbc in this study)
data_corrected$aveMAF = data_corrected$TotalSM/data_corrected$TotalUID
maf = c("maf1","maf2","maf3","maf4","maf5","maf6")
colnames(data_corrected)[6] = "Sample.Category"
## remove water
data_corrected = data_corrected[data_corrected$Template!="Water",]
############# if remove the requirement on the number of SM
## calculating positive wells
data_corrected$Pwell = (data_corrected$SM1>1)+(data_corrected$SM2>1)+(data_corrected$SM3>1)+(data_corrected$SM4>1)+(data_corrected$SM5>1)+(data_corrected$SM6>1)
data_corrected = data_corrected[data_corrected$Pwell>=1,]
data_corrected = data_corrected[!is.na(data_corrected$Template),]
## calculate indel length (SBS is 0)
## not used in this method
data_corrected$indel_length = 0
data_corrected$indel_length[data_corrected$MutType=="Indel" & data_corrected$BaseFrom=="NULL"] = nchar(data_corrected$BaseTo[data_corrected$MutType=="Indel" & data_corrected$BaseFrom=="NULL"])
data_corrected$indel_length[data_corrected$MutType=="Indel" & data_corrected$BaseTo=="NULL"] = nchar(data_corrected$BaseFrom[data_corrected$MutType=="Indel" & data_corrected$BaseTo=="NULL"])
data_corrected = data_corrected[!(data_corrected$Template %in% c("Water","N18")),]
## all normals
# LD fix 10/16/2017
nlpls = unique(data_corrected$Template[data_corrected$Sample.Category=="Normal"])
## mutatioins that have matched WBC in the WBC sheets
checkmut = data_corrected[!is.na(data_corrected$WBC.Sample),]
checkmut = checkmut[checkmut$Template %in% valid$Matched.Plasma,]
## setting MAF=0 if less than 100 UIDs
checkmut$maf1[checkmut$UID1<100] = 0
checkmut$maf2[checkmut$UID2<100] = 0
checkmut$maf3[checkmut$UID3<100] = 0
checkmut$maf4[checkmut$UID4<100] = 0
checkmut$maf5[checkmut$UID5<100] = 0
checkmut$maf6[checkmut$UID6<100] = 0
## max MAF in 6 wells from plasmas
maxinPls = ddply(checkmut, .(remove), summarise, max = max(maf1,maf2,maf3,maf4,maf5,maf6))
## corresponding max in matched WBC
maxinPls$WBC = maxinWBC$max[match(maxinPls$remove,maxinWBC$plsid)]
## mutations that are matched in plasma and WBC
maxinPls = maxinPls[!is.na(maxinPls$WBC),]
## calculate the ratio between matched plasma mutation and corresponding WBC mutation
maxinPls$ratio = maxinPls$max/maxinPls$WBC
## "chip" mutations to be removed if the ratio is less than 100
chip_r = 100
## mutations to be removed
chip = maxinPls$remove[maxinPls$ratio<chip_r]
set.seed(1234+r*10)
## 10 folds cross validation
## cancer type considered in the study
cancer = c("CRC","Lung","Breast","Pancreas","Ovarian","Esophagus","Liver","Stomach","pancreas")
## all cancer templates in the cancer category
#pls.cancer = unique(data_corrected$Template[data_corrected$Category %in% cancer])
# LD fix 10/16/2017
pls.cancer = unique(data_corrected$Template[data_corrected$Sample.Category %in% cancer])
# cvRuns-fold cross-validation
index = cvFolds(length(nlpls), K=cvRuns)
index2 = cvFolds(length(pls.cancer), K=cvRuns)
# run cross-validation
for( w in 1:cvRuns)
{
## normals used as control
nlt = nlpls[index$subsets[index$which!=w]]
## cancers used to build the cancer distribution
plsc.t = pls.cancer[index2$subsets[index2$which!=w]]
## normal plasma mutations
training_nlpls = data_corrected[data_corrected$Template %in% nlt,]
## only mutations that are not on blacklist or caution list will be included in the normalization step and the distribution analysis
## WBC templates
wbc = unique(training_wbc.nm$Template)
col = intersect(colnames(training_wbc.nm),colnames(training_nlpls))
## using the not matched wbc and 80% normal plasma as control to build the distribution for normals
training = rbind.data.frame(training_wbc.nm[,col],training_nlpls[col])
training$maf1[training$UID1<100] = 0
training$maf2[training$UID2<100] = 0
training$maf3[training$UID3<100] = 0
training$maf4[training$UID4<100] = 0
training$maf5[training$UID5<100] = 0
training$maf6[training$UID6<100] = 0
## eliminate "chip" mutations
training = training[!(training$remove %in% chip),]
## calculate indel length
training$indel_length = 0
training$indel_length[training$MutType=="Indel" & training$BaseFrom=="NULL"] = nchar(training$BaseTo[training$MutType=="Indel" & training$BaseFrom=="NULL"])
training$indel_length[training$MutType=="Indel" & training$BaseTo=="NULL"] = nchar(training$BaseFrom[training$MutType=="Indel" & training$BaseTo=="NULL"])
## 1 base pair indel
indels1 = unique(training$mutID[training$indel_length==1])
## more than 1 base pair indel
indels2 = unique(training$mutID[training$indel_length>=2])
## sbs mutations
sbs = unique(training$mutID[training$indel_length==0])
########### Normalization ###########
mut = unique(training$mutID)
## NB!!! 2 since normal wbc only have 2 wells
## create matrix with mutations in normals vs the number of normals times 2 (because of 2 wells)
cc = 2*length(wbc) + 6*length(nlt)
mutation_info = matrix(0, nrow = length(mut), ncol = cc)
## fill in the matrix
maf_wbc = c("maf1","maf2","maf3","maf4","maf5","maf6")
for(i in 1:nrow(mutation_info)){
temp = training[training$mutID==mut[i],]
temp1 = as.vector(t(temp[,maf_wbc]))
temp1 = temp1[!is.na(temp1)]
mutation_info[i,1:(length(temp1))] = temp1
}
## count how many times the mutation is present in training. use for normalization only if present more than once
count = table(c(training$mutID[training$SM1>0], training$mutID[training$SM2>0], training$mutID[training$SM3>0],training$mutID[training$SM4>0],training$mutID[training$SM5>0],training$mutID[training$SM6>0]))
valid = names(count)[count>1]
## calculate the mean and max MAF for mutations in normals
normalization_mutation = data.frame(mutID = mut, stringsAsFactors = FALSE)
normalization_mutation$mean = 0
normalization_mutation$max = 0
for(i in 1:nrow(normalization_mutation)){
normalization_mutation$mean[i] = mean(mutation_info[i,], na.rm = T)
normalization_mutation$max[i] = max(mutation_info[i,], na.rm = T)
}
normalization_mutation = normalization_mutation[normalization_mutation$mean>0,]
## normalization is done on all mutations, including blacklist mutations
## if the mutation has more than 1 positive well in WBCs
normalization_mutation$valid = (normalization_mutation$mutID %in% valid)
## if the mutation is on the blacklist, 1=not on blacklist, 0=yes
## normalization_mutation$bl = (!(normalization_mutation$mutID %in% blacklist))
## if the mutation should be included for the normalization step, 1=yes, 0=no
## normalization_mutation$include = (normalization_mutation$valid)*(normalization_mutation$bl)
normalization_mutation$include = (normalization_mutation$valid)
normalization_mutation$mutType = ""
normalization_mutation$mutType[normalization_mutation$mutID %in% indels1] = "Indel1"
normalization_mutation$mutType[normalization_mutation$mutID %in% indels2] = "Indel2"
normalization_mutation$mutType[normalization_mutation$mutID %in% sbs] = "SBS"
training$adj1 = training$maf1
training$adj2 = training$maf2
training$adj3 = training$maf3
training$adj4 = training$maf4
training$adj5 = training$maf5
training$adj6 = training$maf6
## calculating 25th percentile of the mean MAFs in training mutations (excluding blacklist)
base = quantile(normalization_mutation$mean[normalization_mutation$include==1],0.25)
## not distinguish between indels/SBS
base1 = base
base2 = base
base3 = base
### distinguish between Indels/SBS (normalized separately)
#base1 = quantile(normalization_mutation$mean[normalization_mutation$include==1 & normalization_mutation$mutType=="SBS"],0.25)
#base2 = quantile(normalization_mutation$mean[normalization_mutation$include==1 & normalization_mutation$mutType=="Indel1"],0.25)
#base3 = quantile(normalization_mutation$mean[normalization_mutation$include==1 & normalization_mutation$mutType=="Indel2"],0.25)
## calculating adjusted MAF in normals
for(i in 1:nrow(normalization_mutation)){
if((normalization_mutation$include[i]==1) & (normalization_mutation$mutType[i]=="SBS")){
training$adj1[training$mutID==normalization_mutation$mutID[i]] = training$maf1[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
training$adj2[training$mutID==normalization_mutation$mutID[i]] = training$maf2[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
training$adj3[training$mutID==normalization_mutation$mutID[i]] = training$maf3[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
training$adj4[training$mutID==normalization_mutation$mutID[i]] = training$maf4[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
training$adj5[training$mutID==normalization_mutation$mutID[i]] = training$maf5[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
training$adj6[training$mutID==normalization_mutation$mutID[i]] = training$maf6[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
}else if((normalization_mutation$include[i]==1) & (normalization_mutation$mutType[i]=="Indel1")){
training$adj1[training$mutID==normalization_mutation$mutID[i]] = training$maf1[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
training$adj2[training$mutID==normalization_mutation$mutID[i]] = training$maf2[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
training$adj3[training$mutID==normalization_mutation$mutID[i]] = training$maf3[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
training$adj4[training$mutID==normalization_mutation$mutID[i]] = training$maf4[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
training$adj5[training$mutID==normalization_mutation$mutID[i]] = training$maf5[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
training$adj6[training$mutID==normalization_mutation$mutID[i]] = training$maf6[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
} else if((normalization_mutation$include[i]==1) & (normalization_mutation$mutType[i]=="Indel2")){
training$adj1[training$mutID==normalization_mutation$mutID[i]] = training$maf1[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
training$adj2[training$mutID==normalization_mutation$mutID[i]] = training$maf2[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
training$adj3[training$mutID==normalization_mutation$mutID[i]] = training$maf3[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
training$adj4[training$mutID==normalization_mutation$mutID[i]] = training$maf4[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
training$adj5[training$mutID==normalization_mutation$mutID[i]] = training$maf5[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
training$adj6[training$mutID==normalization_mutation$mutID[i]] = training$maf6[training$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
}
}
## build the distribution based on adjusted MAF in controls
## no separation between Indel/SBS
## here training includes all non-matched WBC and normal plasma controls
training1 = training
### Separate between Indel/SBS
#training1 = training[training$MutType=="SBS",]
#training2 = training[training$MutType=="Indel" & training$indel_length==1,]
#training3 = training[training$MutType=="Indel" & training$indel_length>=2,]
data2 = data.frame(perc = unlist(c(training1$adj1,training1$adj2,training1$adj3,training1$adj4,training1$adj5,training1$adj6)))
data2$UID = unlist(c(training1$UID1,training1$UID2,training1$UID3,training1$UID4,training1$UID5,training1$UID6))
data2 = data2[!is.na(data2$perc),]
data2$perc = as.numeric(data2$perc)
s1 = 1000
each = 1000
r1 = data2[data2$UID<s1 & data2$UID>=100,]
r1$perc.log = as.numeric(log10(r1$perc))
r2 = data2[data2$UID>=s1 & data2$UID<(s1+each*1),]
r2$perc.log = as.numeric(log10(r2$perc))
r3 = data2[data2$UID>=(s1+each*1) & data2$UID<(s1+each*2),]
r3$perc.log = as.numeric(log10(r3$perc))
r4 = data2[data2$UID>=(s1+each*2) & data2$UID<(s1+each*3),]
r4$perc.log = as.numeric(log10(r4$perc))
r5 = data2[data2$UID>=(s1+each*3) & data2$UID<(s1+each*4),]
r5$perc.log = as.numeric(log10(r5$perc))
r6 = data2[data2$UID>=(s1+each*4) & data2$UID<(s1+each*5),]
r6$perc.log = as.numeric(log10(r6$perc))
r7 = data2[data2$UID>=(s1+each*5) & data2$UID<(s1+each*6),]
r7$perc.log = as.numeric(log10(r7$perc))
r8 = data2[data2$UID>=(s1+each*6) & data2$UID<(s1+each*7),]
r8$perc.log = as.numeric(log10(r8$perc))
r9 = data2[data2$UID>=(s1+each*7) & data2$UID<(s1+each*8),]
r9$perc.log = as.numeric(log10(r9$perc))
r10 = data2[data2$UID>=(s1+each*8),]
r10$perc.log = as.numeric(log10(r10$perc))
d1 = density(r1$perc.log)
d2 = density(r2$perc.log)
d3 = density(r3$perc.log)
d4 = density(r4$perc.log)
d5 = density(r5$perc.log)
d6 = density(r6$perc.log)
d7 = density(r7$perc.log)
d8 = density(r8$perc.log)
d9 = density(r9$perc.log)
d10 = density(r10$perc.log)
list_func1 = list(d1, d2, d3, d4, d5, d6, d7,d8,d9,d10)
list_data1 = list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10)
l1 = length(list_func1)
testSet = data_corrected
testSet = data.frame(testSet)
## remove matched plasma mutations and WBC mutations
testSet = testSet[!(testSet$remove %in% chip),]
## calculate adjusted MAF for all templates
testSet$maf1[is.na(testSet$UID1)] = 0
testSet$maf2[is.na(testSet$UID2)] = 0
testSet$maf3[is.na(testSet$UID3)] = 0
testSet$maf4[is.na(testSet$UID4)] = 0
testSet$maf5[is.na(testSet$UID5)] = 0
testSet$maf6[is.na(testSet$UID6)] = 0
testSet$maf1[testSet$UID1==0] = 0
testSet$maf2[testSet$UID2==0] = 0
testSet$maf3[testSet$UID3==0] = 0
testSet$maf4[testSet$UID4==0] = 0
testSet$maf5[testSet$UID5==0] = 0
testSet$maf6[testSet$UID6==0] = 0
testSet$adj1 = testSet$maf1
testSet$adj2 = testSet$maf2
testSet$adj3 = testSet$maf3
testSet$adj4 = testSet$maf4
testSet$adj5 = testSet$maf5
testSet$adj6 = testSet$maf6
testSet$max = 0
## normalization of mutations in the test set
for(i in 1:nrow(normalization_mutation)){
testSet$max[testSet$mutID==normalization_mutation$mutID[i]] = normalization_mutation$max[i]
if((normalization_mutation$include[i]==1) & (normalization_mutation$mutType[i]=="SBS")){
testSet$adj1[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf1[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
testSet$adj2[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf2[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
testSet$adj3[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf3[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
testSet$adj4[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf4[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
testSet$adj5[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf5[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
testSet$adj6[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf6[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base1)
}else if((normalization_mutation$include[i]==1) & (normalization_mutation$mutType[i]=="Indel1")){
testSet$adj1[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf1[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
testSet$adj2[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf2[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
testSet$adj3[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf3[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
testSet$adj4[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf4[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
testSet$adj5[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf5[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
testSet$adj6[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf6[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base2)
}else if((normalization_mutation$include[i]==1) & (normalization_mutation$mutType[i]=="Indel2")){
testSet$adj1[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf1[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
testSet$adj2[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf2[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
testSet$adj3[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf3[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
testSet$adj4[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf4[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
testSet$adj5[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf5[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
testSet$adj6[testSet$mutID==normalization_mutation$mutID[i]] = testSet$maf6[testSet$mutID==normalization_mutation$mutID[i]]/(normalization_mutation$mean[i]/base3)
}
}
testSet$perc1 = log10(testSet$adj1)
testSet$perc2 = log10(testSet$adj2)
testSet$perc3 = log10(testSet$adj3)
testSet$perc4 = log10(testSet$adj4)
testSet$perc5 = log10(testSet$adj5)
testSet$perc6 = log10(testSet$adj6)
## cancer templates in cancer distribution
cancerPT = testSet[testSet$PT.Avg.MAF>5 & (testSet$Template %in% plsc.t),]
cancerPT = cancerPT[!is.na(cancerPT$Template),]
cancermaf = data.frame(UID = c(cancerPT$UID1,cancerPT$UID2,cancerPT$UID3,cancerPT$UID4,cancerPT$UID5,cancerPT$UID6), perc = c(cancerPT$adj1,cancerPT$adj2,cancerPT$adj3,cancerPT$adj4,cancerPT$adj5,cancerPT$adj6))
data2 = cancermaf
data2 = data2[!is.na(data2$perc),]
data2$perc = as.numeric(data2$perc)
s1 = 1000
each = 1000
r1 = data2[data2$UID<s1 & data2$UID>=100,]
r1$perc.log = as.numeric(log10(r1$perc))
r2 = data2[data2$UID>=s1 & data2$UID<(s1+each*1),]
r2$perc.log = as.numeric(log10(r2$perc))
r3 = data2[data2$UID>=(s1+each*1) & data2$UID<(s1+each*2),]
r3$perc.log = as.numeric(log10(r3$perc))
r4 = data2[data2$UID>=(s1+each*2) & data2$UID<(s1+each*3),]
r4$perc.log = as.numeric(log10(r4$perc))
r5 = data2[data2$UID>=(s1+each*3) & data2$UID<(s1+each*4),]
r5$perc.log = as.numeric(log10(r5$perc))
r6 = data2[data2$UID>=(s1+each*4) & data2$UID<(s1+each*5),]
r6$perc.log = as.numeric(log10(r6$perc))
r7 = data2[data2$UID>=(s1+each*5) & data2$UID<(s1+each*6),]
r7$perc.log = as.numeric(log10(r7$perc))
r8 = data2[data2$UID>=(s1+each*6) & data2$UID<(s1+each*7),]
r8$perc.log = as.numeric(log10(r8$perc))
r9 = data2[data2$UID>=(s1+each*7) & data2$UID<(s1+each*8),]
r9$perc.log = as.numeric(log10(r9$perc))
r10 = data2[data2$UID>=(s1+each*8),]
r10$perc.log = as.numeric(log10(r10$perc))
d1 = density(r1$perc.log)
d2 = density(r2$perc.log)
d3 = density(r3$perc.log)
d4 = density(r4$perc.log)
d5 = density(r5$perc.log)
d6 = density(r6$perc.log)
d7 = density(r7$perc.log)
d8 = density(r8$perc.log)
d9 = density(r9$perc.log)
d10 = density(r10$perc.log)
list_func2 = list(d1, d2, d3, d4, d5, d6, d7,d8,d9,d10)
list_data2 = list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10)
## list of data and distribution for normals
list_func =list(list_func1)
list_data = list(list_data1)
## list of data and distribution for cancers
list_func.c = list(list_func2)
list_data.c = list(list_data2)
testSet$p.value1 = 0.5
testSet$p.value2 = 0.5
testSet$p.value3 = 0.5
testSet$p.value4 = 0.5
testSet$p.value5 = 0.5
testSet$p.value6 = 0.5
## adding the UID group numbers
testSet$temp1 = apply(testSet[,c("UID1","UID2","UID3","UID4","UID5","UID6")], 1, function(x) min(ceiling((x[1]-(s1-1))/each)+1,l1))
testSet$temp2 = apply(testSet[,c("UID1","UID2","UID3","UID4","UID5","UID6")], 1, function(x) min(ceiling((x[2]-(s1-1))/each)+1,l1))
testSet$temp3 = apply(testSet[,c("UID1","UID2","UID3","UID4","UID5","UID6")], 1, function(x) min(ceiling((x[3]-(s1-1))/each)+1,l1))
testSet$temp4 = apply(testSet[,c("UID1","UID2","UID3","UID4","UID5","UID6")], 1, function(x) min(ceiling((x[4]-(s1-1))/each)+1,l1))
testSet$temp5 = apply(testSet[,c("UID1","UID2","UID3","UID4","UID5","UID6")], 1, function(x) min(ceiling((x[5]-(s1-1))/each)+1,l1))
testSet$temp6 = apply(testSet[,c("UID1","UID2","UID3","UID4","UID5","UID6")], 1, function(x) min(ceiling((x[6]-(s1-1))/each)+1,l1))
testSet$indel_group = 1
## calculate the p values
testSet$adj1_1 = testSet$adj1>0
testSet$adj2_1 = testSet$adj2>0
testSet$adj3_1 = testSet$adj3>0
testSet$adj4_1 = testSet$adj4>0
testSet$adj5_1 = testSet$adj5>0
testSet$adj6_1 = testSet$adj6>0
## calculate p values if the well is from normals
for(i in 1:l1){
testSet$p.value1[testSet$temp1==i & testSet$adj1_1==TRUE] = apply(testSet[testSet$temp1==i & testSet$adj1_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[1]-list_data[[x[7]]][[i]]$perc.log, sd = list_func[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value2[testSet$temp2==i & testSet$adj2_1==TRUE] = apply(testSet[testSet$temp2==i & testSet$adj2_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[2]-list_data[[x[7]]][[i]]$perc.log, sd = list_func[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value3[testSet$temp3==i & testSet$adj3_1==TRUE] = apply(testSet[testSet$temp3==i & testSet$adj3_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[3]-list_data[[x[7]]][[i]]$perc.log, sd = list_func[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value4[testSet$temp4==i & testSet$adj4_1==TRUE] = apply(testSet[testSet$temp4==i & testSet$adj4_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[4]-list_data[[x[7]]][[i]]$perc.log, sd = list_func[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value5[testSet$temp5==i & testSet$adj5_1==TRUE] = apply(testSet[testSet$temp5==i & testSet$adj5_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[5]-list_data[[x[7]]][[i]]$perc.log, sd = list_func[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value6[testSet$temp6==i & testSet$adj6_1==TRUE] = apply(testSet[testSet$temp6==i & testSet$adj6_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[6]-list_data[[x[7]]][[i]]$perc.log, sd = list_func[[x[7]]][[i]]$bw, lower.tail=FALSE))))
}
## setting p values to 1-10^-8 if 0 SM
testSet$p.value1[testSet$adj1_1==FALSE] = 1-10^-8
testSet$p.value2[testSet$adj2_1==FALSE] = 1-10^-8
testSet$p.value3[testSet$adj3_1==FALSE] = 1-10^-8
testSet$p.value4[testSet$adj4_1==FALSE] = 1-10^-8
testSet$p.value5[testSet$adj5_1==FALSE] = 1-10^-8
testSet$p.value6[testSet$adj6_1==FALSE] = 1-10^-8
## pvalues for wells with less than 100 UIDs are calculate using binomial, p is the aveMAF from 6 wells
testSet$p.value1[!is.na(testSet$UID1) & testSet$UID1<100] = apply(testSet[!is.na(testSet$UID1) & testSet$UID1<100, c("SM1","maf1","UID1","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value2[!is.na(testSet$UID2) & testSet$UID2<100] = apply(testSet[!is.na(testSet$UID2) & testSet$UID2<100, c("SM2","maf2","UID2","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value3[!is.na(testSet$UID3) & testSet$UID3<100] = apply(testSet[!is.na(testSet$UID3) & testSet$UID3<100, c("SM3","maf3","UID3","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value4[!is.na(testSet$UID4) & testSet$UID4<100] = apply(testSet[!is.na(testSet$UID4) & testSet$UID4<100, c("SM4","maf4","UID4","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value5[!is.na(testSet$UID5) & testSet$UID5<100] = apply(testSet[!is.na(testSet$UID5) & testSet$UID5<100, c("SM5","maf5","UID5","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value6[!is.na(testSet$UID6) & testSet$UID6<100] = apply(testSet[!is.na(testSet$UID6) & testSet$UID6<100, c("SM6","maf6","UID6","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
## 0 wells with <100 UIDs are assigned p values 1-10^-8 (theoretically it is 1)
testSet$p.value1[!is.na(testSet$UID1) & testSet$UID1<100 & testSet$SM1==0] = 1-10^-8
testSet$p.value2[!is.na(testSet$UID2) & testSet$UID2<100 & testSet$SM2==0] = 1-10^-8
testSet$p.value3[!is.na(testSet$UID3) & testSet$UID3<100 & testSet$SM3==0] = 1-10^-8
testSet$p.value4[!is.na(testSet$UID4) & testSet$UID4<100 & testSet$SM4==0] = 1-10^-8
testSet$p.value5[!is.na(testSet$UID5) & testSet$UID5<100 & testSet$SM5==0] = 1-10^-8
testSet$p.value6[!is.na(testSet$UID6) & testSet$UID6<100 & testSet$SM6==0] = 1-10^-8
## p values for wells with 0 UID are assigned as 0.5 (when inverting it has 0)
testSet$p.value1[testSet$UID1==0] = 0.5
testSet$p.value2[testSet$UID2==0] = 0.5
testSet$p.value3[testSet$UID3==0] = 0.5
testSet$p.value4[testSet$UID4==0] = 0.5
testSet$p.value5[testSet$UID5==0] = 0.5
testSet$p.value6[testSet$UID6==0] = 0.5
### calculating p values if the well is from cancers
testSet$p.value1.c = 0.5
testSet$p.value2.c = 0.5
testSet$p.value3.c = 0.5
testSet$p.value4.c = 0.5
testSet$p.value5.c = 0.5
testSet$p.value6.c = 0.5
for(i in 1:l1){
testSet$p.value1.c[testSet$temp1==i & testSet$adj1_1==TRUE] = apply(testSet[testSet$temp1==i & testSet$adj1_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[1]-list_data.c[[x[7]]][[i]]$perc.log, sd = list_func.c[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value2.c[testSet$temp2==i & testSet$adj2_1==TRUE] = apply(testSet[testSet$temp2==i & testSet$adj2_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[2]-list_data.c[[x[7]]][[i]]$perc.log, sd = list_func.c[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value3.c[testSet$temp3==i & testSet$adj3_1==TRUE] = apply(testSet[testSet$temp3==i & testSet$adj3_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[3]-list_data.c[[x[7]]][[i]]$perc.log, sd = list_func.c[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value4.c[testSet$temp4==i & testSet$adj4_1==TRUE] = apply(testSet[testSet$temp4==i & testSet$adj4_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[4]-list_data.c[[x[7]]][[i]]$perc.log, sd = list_func.c[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value5.c[testSet$temp5==i & testSet$adj5_1==TRUE] = apply(testSet[testSet$temp5==i & testSet$adj5_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[5]-list_data.c[[x[7]]][[i]]$perc.log, sd = list_func.c[[x[7]]][[i]]$bw, lower.tail=FALSE))))
testSet$p.value6.c[testSet$temp6==i & testSet$adj6_1==TRUE] = apply(testSet[testSet$temp6==i & testSet$adj6_1==TRUE,c("perc1", "perc2","perc3", "perc4","perc5", "perc6","indel_group")], 1, function(x) return(mean(pnorm(x[6]-list_data.c[[x[7]]][[i]]$perc.log, sd = list_func.c[[x[7]]][[i]]$bw, lower.tail=FALSE))))
}
testSet$p.value1.c[testSet$adj1_1==FALSE] = 1-10^-8
testSet$p.value2.c[testSet$adj2_1==FALSE] = 1-10^-8
testSet$p.value3.c[testSet$adj3_1==FALSE] = 1-10^-8
testSet$p.value4.c[testSet$adj4_1==FALSE] = 1-10^-8
testSet$p.value5.c[testSet$adj5_1==FALSE] = 1-10^-8
testSet$p.value6.c[testSet$adj6_1==FALSE] = 1-10^-8
## pvalues for wells with less than 100 UIDs are calculate using binomial
testSet$p.value1.c[!is.na(testSet$UID1) & testSet$UID1<100] = apply(testSet[!is.na(testSet$UID1) & testSet$UID1<100, c("SM1","maf1","UID1","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value2.c[!is.na(testSet$UID2) & testSet$UID2<100] = apply(testSet[!is.na(testSet$UID2) & testSet$UID2<100, c("SM2","maf2","UID2","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value3.c[!is.na(testSet$UID3) & testSet$UID3<100] = apply(testSet[!is.na(testSet$UID3) & testSet$UID3<100, c("SM3","maf3","UID3","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value4.c[!is.na(testSet$UID4) & testSet$UID4<100] = apply(testSet[!is.na(testSet$UID4) & testSet$UID4<100, c("SM4","maf4","UID4","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value5.c[!is.na(testSet$UID5) & testSet$UID5<100] = apply(testSet[!is.na(testSet$UID5) & testSet$UID5<100, c("SM5","maf5","UID5","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
testSet$p.value6.c[!is.na(testSet$UID6) & testSet$UID6<100] = apply(testSet[!is.na(testSet$UID6) & testSet$UID6<100, c("SM6","maf6","UID6","aveMAF")], 1, function(x) return(pbinom(max(0,x[1]-1), x[3], x[4],lower.tail = FALSE)))
## 0 wells with <100 UIDs are assigned p values 1-10^-8 (theoretically it is 1)
testSet$p.value1.c[!is.na(testSet$UID1) & testSet$UID1<100 & testSet$SM1==0] = 1-10^-8
testSet$p.value2.c[!is.na(testSet$UID2) & testSet$UID2<100 & testSet$SM2==0] = 1-10^-8
testSet$p.value3.c[!is.na(testSet$UID3) & testSet$UID3<100 & testSet$SM3==0] = 1-10^-8
testSet$p.value4.c[!is.na(testSet$UID4) & testSet$UID4<100 & testSet$SM4==0] = 1-10^-8
testSet$p.value5.c[!is.na(testSet$UID5) & testSet$UID5<100 & testSet$SM5==0] = 1-10^-8
testSet$p.value6.c[!is.na(testSet$UID6) & testSet$UID6<100 & testSet$SM6==0] = 1-10^-8
## p values for wells with 0 UID are assigned as 0.5 (when inverting it is 0)
testSet$p.value1.c[testSet$UID1==0] = 0.5
testSet$p.value2.c[testSet$UID2==0] = 0.5
testSet$p.value3.c[testSet$UID3==0] = 0.5
testSet$p.value4.c[testSet$UID4==0] = 0.5
testSet$p.value5.c[testSet$UID5==0] = 0.5
testSet$p.value6.c[testSet$UID6==0] = 0.5
## ratio p.cancer/p.normal
testSet$r1 = testSet$p.value1.c/testSet$p.value1
testSet$r2 = testSet$p.value2.c/testSet$p.value2
testSet$r3 = testSet$p.value3.c/testSet$p.value3
testSet$r4 = testSet$p.value4.c/testSet$p.value4
testSet$r5 = testSet$p.value5.c/testSet$p.value5
testSet$r6 = testSet$p.value6.c/testSet$p.value6
testSet$blacklist = testSet$mutID %in% blacklist
result = testSet[testSet$TotalUID>=200,]
result = result[!(result$Template %in% c(nlt,"Water","N18",plsc.t)),]
result$Template = as.character(result$Template)
save.image(file = paste0("PvalueRatio1209cv_5perc_bl_",r,"_", w,"_1006data.rda"))
}