|
a |
|
b/Analysis_3.R |
|
|
1 |
library(tibble) |
|
|
2 |
library(dplyr) |
|
|
3 |
library(bmrm) |
|
|
4 |
library(pROC) |
|
|
5 |
library(glmnet) |
|
|
6 |
library(xlsx) |
|
|
7 |
library(dplyr) |
|
|
8 |
#Functions |
|
|
9 |
|
|
|
10 |
writeCSVMultiple <- function(x,file){ |
|
|
11 |
if(dir.exists("file")!=F){ |
|
|
12 |
cat("Creating folder",file,"\n") |
|
|
13 |
dir.create(file) |
|
|
14 |
} |
|
|
15 |
for(i in seq_along(x)){ |
|
|
16 |
write.csv(x = x[[i]], |
|
|
17 |
file = paste(file, "_",names(x)[[i]],".csv",sep = "")) |
|
|
18 |
} |
|
|
19 |
} |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
QFunclog <- function(x,Threshold) |
|
|
23 |
ifelse(x>Threshold,log10(x+1),0) |
|
|
24 |
QFuncjumpramp <- function(x,Threshold) |
|
|
25 |
ifelse(x>Threshold,x,0) |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
printRemoveDropResults <- function(ThisResult,whichRound="Round 4"){ |
|
|
29 |
cat("Sensitivity:",(mean(unlist(ThisResult$AllSensitivity))),"\n") |
|
|
30 |
|
|
|
31 |
print("Only this protein:") |
|
|
32 |
print((rownames(ThisResult$AllProbPredictionsMinusFeatureNIter) %>% |
|
|
33 |
sapply(FUN = function(x) ThisResult$AllProbPredictionsMinusFeatureNIter[[x,"LR"]]%>% |
|
|
34 |
dplyr::select(-BV) %>% |
|
|
35 |
summarise_all(.funs = funs(mean(.[which(CancerStatus==T)]>ThisResult$AllThresh99NIter[[x,"LR"]]))))) %>% |
|
|
36 |
apply(MARGIN = c(1,2),as.numeric) %>% |
|
|
37 |
rowMeans()%>% sort()%>% t()%>% t()) |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
print("Remove this protein:") |
|
|
41 |
print((rownames(ThisResult$AllProbPredictionsMinusFeatureNIter) %>% |
|
|
42 |
sapply(FUN = function(x) ThisResult$AllProbPredictionsDropFeatureNIter[[x,"LR"]]%>% |
|
|
43 |
dplyr::select(-BV) %>% |
|
|
44 |
summarise_all(.funs = funs(mean(.[which(CancerStatus==T)]>ThisResult$AllThresh99NIter[[x,"LR"]]))))) %>% |
|
|
45 |
apply(MARGIN = c(1,2),as.numeric) %>% |
|
|
46 |
rowMeans()%>%sort()%>%t()%>%t()) |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
mycoefs <- ThisResult$Alllogit %>% coef(s=0) %>% abs() |
|
|
50 |
FirstIteration <- ThisResult$Master4ClassificationwithClassAll[whichRound,"LR"][[1]] |
|
|
51 |
MinDiff <- FirstIteration %>% |
|
|
52 |
mutate_at(.vars = setdiff(colnames(FirstIteration),c("CancerStatus","maxOmega","fold")), |
|
|
53 |
.funs=funs(QFuncjumpramp(.,quantile(.[which(CancerStatus==T)],probs=0.95)))) %>% |
|
|
54 |
summarise_at(.vars = setdiff(colnames(FirstIteration), |
|
|
55 |
c("CancerStatus","fold")), |
|
|
56 |
.funs = funs(mean(.[which(CancerStatus==T)])-mean(.[which(CancerStatus==F)]))) %>% |
|
|
57 |
as.data.frame() |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
RankingCoefs <- data.frame('Ranking Score'= as.vector(MinDiff*mycoefs[names(MinDiff),1]) %>% |
|
|
61 |
t(), |
|
|
62 |
'Coefs' = mycoefs[names(MinDiff),1] %>% |
|
|
63 |
t() |
|
|
64 |
%>%t()) |
|
|
65 |
|
|
|
66 |
print(RankingCoefs%>% |
|
|
67 |
rownames_to_column("Protein")%>% |
|
|
68 |
arrange(Ranking.Score)) |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
} |
|
|
72 |
|
|
|
73 |
ProbsEachRound <- function(ThisResult,csvFile=NULL){ |
|
|
74 |
Probs = ThisResult$AllProbPredictionsNIter[,"LR"] %>% sapply(FUN = function(x) x) |
|
|
75 |
Probs <- rbind(Probs,Thresh=ThisResult$AllThresh99NIter[,"LR"] %>% sapply(FUN = function(x) x)) |
|
|
76 |
Probs <- cbind(Probs, |
|
|
77 |
CancerStatus = |
|
|
78 |
ThisResult$Master4ClassificationwithClassAll[["Round 1","LR"]][rownames(Probs),"CancerStatus"]) |
|
|
79 |
|
|
|
80 |
if(!is.null(csvFile)) |
|
|
81 |
write.csv(file = csvFile,x = Probs) |
|
|
82 |
return(Probs) |
|
|
83 |
} |
|
|
84 |
|
|
|
85 |
Generate4LudaObject <- function(ThisResult,rdaFile,TissueType=TissueType_RFData){ |
|
|
86 |
ForLuda <- sapply(setNames(paste("Round",1:10),paste("Round",1:10)), |
|
|
87 |
function(x) cbind(ThisResult$Master4ClassificationwithClassAll[[x,"LR"]], |
|
|
88 |
LogitCall=ThisResult$AllpredictionsNIter[[x,"LR"]], |
|
|
89 |
LogitProb=ThisResult$AllProbPredictionsNIter[[x,"LR"]], |
|
|
90 |
Tissue=TissueType_RFData[rownames(ThisResult$Master4ClassificationwithClassAll[[x,"LR"]]) |
|
|
91 |
|
|
|
92 |
]),simplify = F) |
|
|
93 |
ForLudaFeatureRanks <- ThisResult$AlllogitFeaturesRank |
|
|
94 |
ForLudaSensitivity <- ThisResult$AllSensitivity |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
save(file=rdaFile, |
|
|
98 |
list= c("ForLuda","ForLudaFeatureRanks","ForLudaSensitivity","ThisResult")) |
|
|
99 |
|
|
|
100 |
return( list(ForLuda=ForLuda, |
|
|
101 |
ForLudaFeatureRanks=ForLudaFeatureRanks, |
|
|
102 |
ForLudaSensitivity=ForLudaSensitivity, |
|
|
103 |
ThisResult=ThisResult)) |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
} |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
cv.CancervsNormal.QuantileReplace.Mutatation.knownCV <- function(CancerStatus, |
|
|
110 |
# a vector containing cancer status (T=Cancer) |
|
|
111 |
Proteins, |
|
|
112 |
# a matrix of protien vector |
|
|
113 |
Mutations, |
|
|
114 |
# a matrix of Mutations |
|
|
115 |
# It must at include BV., |
|
|
116 |
# iteration , fold |
|
|
117 |
|
|
|
118 |
#Methods=c("RF","Logit"), |
|
|
119 |
# Methods to test |
|
|
120 |
ProteinsHigherCancer = T, |
|
|
121 |
#If true, we only keep proteins with higher median in cancer in the sense of wilcoxon |
|
|
122 |
ForcePositiveCoeff = F, |
|
|
123 |
#If true, we force the coefficients to be positive (This is togher measure than ProteinsHigherCancer) |
|
|
124 |
#myseed=1234, |
|
|
125 |
#NIter=10, |
|
|
126 |
#nfold=10, |
|
|
127 |
SpecSet = 0.99, #Specificity we shoot for |
|
|
128 |
FeaturesToQuantile, # Features to quantile, set to Null if you do not wish quantiling |
|
|
129 |
QuantileF=0.95, |
|
|
130 |
QuantileFunction= function(x,Threshold) |
|
|
131 |
ifelse(x>Threshold,x,0), |
|
|
132 |
NoPenaltyonCtdna=F, |
|
|
133 |
NoLassoPenaly = F){ |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
mylower <- ifelse(ForcePositiveCoeff,0,-Inf) |
|
|
138 |
if(ProteinsHigherCancer){ |
|
|
139 |
#apply Wilcoxon to filter proteins if ProteinsHigherCancer==T |
|
|
140 |
|
|
|
141 |
Proteins2Use <- (apply(Proteins,MARGIN = 2, |
|
|
142 |
FUN = function(x) wilcox.test( |
|
|
143 |
x[which(CancerStatus==T)], |
|
|
144 |
x[which(CancerStatus==F)], |
|
|
145 |
alternative = "greater")$p.value)<0.05) %>% |
|
|
146 |
which() %>% |
|
|
147 |
names() |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
# Proteins2Use <- (colMeans(Proteins[which(CancerStatus==T),,drop=F])- |
|
|
151 |
# colMeans(Proteins[which(CancerStatus==F),,drop=F])>0) %>% |
|
|
152 |
# which() %>% |
|
|
153 |
# names() |
|
|
154 |
|
|
|
155 |
}else{ |
|
|
156 |
Proteins2Use <- colnames(Proteins) |
|
|
157 |
} |
|
|
158 |
|
|
|
159 |
|
|
|
160 |
# if(is.null(Mutations)){ |
|
|
161 |
# Master4ClassificationwithClass <- data.frame(CancerStatus=CancerStatus, |
|
|
162 |
# Proteins[,Proteins2Use,drop=F]) |
|
|
163 |
# }else{ |
|
|
164 |
|
|
|
165 |
|
|
|
166 |
#} |
|
|
167 |
|
|
|
168 |
#Remove the penalty for ctdna if NoPenaltyonCtdna==T |
|
|
169 |
if(NoPenaltyonCtdna){ |
|
|
170 |
PenaltyFactor <- c(rep(1,length(Proteins2Use)),rep(0,ncol(Mutations)-3)) |
|
|
171 |
}else{ |
|
|
172 |
PenaltyFactor <-c(rep(1,length(Proteins2Use)),rep(1,ncol(Mutations)-3)) |
|
|
173 |
} |
|
|
174 |
|
|
|
175 |
#Only FeaturesToQuantile which have survived the Wilcoxon are being quantiles |
|
|
176 |
if(!is.null(FeaturesToQuantile)) |
|
|
177 |
FeaturesToQuantile <- intersect(FeaturesToQuantile,Proteins2Use) |
|
|
178 |
|
|
|
179 |
#RFFeatures <- colnames(Master4ClassificationwithClass) %>% setdiff("CancerStatus") |
|
|
180 |
|
|
|
181 |
|
|
|
182 |
#augmenting the quantiled and non-quantiled proteins |
|
|
183 |
MutationsRound1st <- Mutations %>% |
|
|
184 |
filter(iteration==1) %>% |
|
|
185 |
column_to_rownames("BV") |
|
|
186 |
MutationsRound1st <- MutationsRound1st[rownames(Proteins),] |
|
|
187 |
MutationsRound1st[is.na(MutationsRound1st)] <- 0 |
|
|
188 |
|
|
|
189 |
Master4ClassificationwithClass <- data.frame(CancerStatus=CancerStatus, |
|
|
190 |
Proteins[,Proteins2Use,drop=F], |
|
|
191 |
MutationsRound1st %>% |
|
|
192 |
dplyr::select(-iteration,-fold)) |
|
|
193 |
if(is.null(FeaturesToQuantile)){ |
|
|
194 |
Master4ClassificationwithClassAppQuantAug <- |
|
|
195 |
Master4ClassificationwithClass |
|
|
196 |
}else{ |
|
|
197 |
|
|
|
198 |
|
|
|
199 |
ThrehsoldsTraining <- Master4ClassificationwithClass %>% |
|
|
200 |
filter(CancerStatus==F) %>% |
|
|
201 |
summarise_at(.vars = FeaturesToQuantile,# to implement ramp you can manipulate here |
|
|
202 |
.funs = funs(quantile(.,probs = QuantileF))) |
|
|
203 |
|
|
|
204 |
Master4ClassificationwithClassAppQuantAug <- # to implement ramp you can manipulate here |
|
|
205 |
Master4ClassificationwithClass %>% |
|
|
206 |
mutate_(.dots = setNames(paste("QuantileFunction(", |
|
|
207 |
names(ThrehsoldsTraining), |
|
|
208 |
",", |
|
|
209 |
ThrehsoldsTraining,")", |
|
|
210 |
sep = ""), |
|
|
211 |
names(ThrehsoldsTraining))) |
|
|
212 |
|
|
|
213 |
} |
|
|
214 |
|
|
|
215 |
#Do cross-validation without quantiling for the Logit |
|
|
216 |
Alllogit <- cv.glmnet(x= Master4ClassificationwithClassAppQuantAug %>% |
|
|
217 |
dplyr::select(-CancerStatus) %>% |
|
|
218 |
as.matrix(), |
|
|
219 |
y=Master4ClassificationwithClass$CancerStatus, |
|
|
220 |
type.measure = "auc", |
|
|
221 |
family="binomial", |
|
|
222 |
nfolds = length(unique(MutationsRound1st$fold)), |
|
|
223 |
penalty.factor = PenaltyFactor, |
|
|
224 |
lower.limits=mylower, |
|
|
225 |
keep=TRUE) |
|
|
226 |
AllLogitThreshod <- apply(Alllogit$fit.preval[which(Master4ClassificationwithClass$CancerStatus==F),], |
|
|
227 |
MARGIN = 2, |
|
|
228 |
FUN = quantile,probs=SpecSet,na.rm=T) %>% |
|
|
229 |
as.numeric() ## to implement ramp you can manipulate here |
|
|
230 |
|
|
|
231 |
AllSensity <- sapply(seq_along(AllLogitThreshod), |
|
|
232 |
FUN = function(x) |
|
|
233 |
mean(Alllogit$fit.preval[ which(Master4ClassificationwithClass$CancerStatus==T),x] |
|
|
234 |
>AllLogitThreshod[x])) |
|
|
235 |
#find the best lambda suited for desired SpecSet |
|
|
236 |
if(NoLassoPenaly){ |
|
|
237 |
lambda.best <- 0 |
|
|
238 |
}else{ |
|
|
239 |
lambda.best <- Alllogit$lambda[which.max(AllSensity)] |
|
|
240 |
} |
|
|
241 |
AlllogitFeatures <- which(as.matrix(coef(Alllogit,s=lambda.best))!=0, |
|
|
242 |
arr.ind = T, |
|
|
243 |
useNames = T) %>% |
|
|
244 |
rownames() %>% |
|
|
245 |
setdiff("(Intercept)") |
|
|
246 |
|
|
|
247 |
NIter <- unique(Mutations$iteration) |
|
|
248 |
|
|
|
249 |
AllProbPredictionsNIter <- matrix(data = list(), |
|
|
250 |
ncol = 1, |
|
|
251 |
nrow = length(NIter), |
|
|
252 |
dimnames = list(paste("Round",NIter), |
|
|
253 |
"LR")) |
|
|
254 |
AllThresh99NIter <- AllProbPredictionsNIter |
|
|
255 |
|
|
|
256 |
AllpredictionsNIter <- AllProbPredictionsNIter |
|
|
257 |
AllProbPredictionsNIter <- AllProbPredictionsNIter |
|
|
258 |
AllSensitivity <- AllProbPredictionsNIter |
|
|
259 |
Master4ClassificationwithClassAll <- AllProbPredictionsNIter |
|
|
260 |
AllProbPredictionsMinusFeatureNIter <- AllProbPredictionsNIter |
|
|
261 |
AllProbPredictionsDropFeatureNIter <- AllProbPredictionsNIter |
|
|
262 |
#set.seed(myseed) |
|
|
263 |
#AllMyIndices <- sapply(1:NIter,FUN = function(x) |
|
|
264 |
# balanced.cv.fold(Master4ClassificationwithClass$CancerStatus) %>% as.numeric,simplify = F) |
|
|
265 |
|
|
|
266 |
#names(AllMyIndices)<- paste("Round",NIter,sep = "") |
|
|
267 |
|
|
|
268 |
set.seed(1234) |
|
|
269 |
for( j in NIter){ |
|
|
270 |
#MyIndices <- AllMyIndices[[j]] |
|
|
271 |
ThisRound <- Mutations %>% |
|
|
272 |
filter(iteration==j) |
|
|
273 |
|
|
|
274 |
uniqueMyIndices <- ThisRound %>% |
|
|
275 |
dplyr::select(fold) %>% |
|
|
276 |
unlist() %>% |
|
|
277 |
unique() |
|
|
278 |
|
|
|
279 |
Allpredictions <- setNames(vector(length = nrow(Proteins)),rownames(Proteins)) |
|
|
280 |
ProbPredictions <- setNames(vector(length = nrow(Proteins),mode = "numeric") ,rownames(Proteins)) |
|
|
281 |
ProbPredictionsMinusFeature <- matrix(0, |
|
|
282 |
nrow=nrow(Proteins), |
|
|
283 |
ncol= ncol(Master4ClassificationwithClass)-1 , |
|
|
284 |
dimnames = list(rownames(Proteins),Master4ClassificationwithClass %>% colnames() %>% setdiff("CancerStatus")) |
|
|
285 |
|
|
|
286 |
|
|
|
287 |
) |
|
|
288 |
ProbPredictionsDropFeature <- ProbPredictionsMinusFeature |
|
|
289 |
#for(k in seq_along(Methods)){ |
|
|
290 |
MutationsThisRound <- ThisRound %>% |
|
|
291 |
column_to_rownames("BV") |
|
|
292 |
MutationsThisRound <- MutationsThisRound[rownames(Proteins),] |
|
|
293 |
MutationsThisRound[is.na(MutationsThisRound)] <- 0 |
|
|
294 |
|
|
|
295 |
Master4ClassificationwithClass <- data.frame(CancerStatus=CancerStatus, |
|
|
296 |
Proteins[,Proteins2Use,drop=F], |
|
|
297 |
MutationsThisRound %>% |
|
|
298 |
dplyr::select(-iteration,-fold)) |
|
|
299 |
for( i in uniqueMyIndices){ |
|
|
300 |
trainSamples <- ThisRound %>% #which(MyIndices!=i) |
|
|
301 |
filter(fold!=i) %>% |
|
|
302 |
dplyr::select(BV) %>% |
|
|
303 |
unlist() |
|
|
304 |
testSamples <- ThisRound %>% #which(MyIndices!=i) |
|
|
305 |
filter(fold==i) %>% |
|
|
306 |
dplyr::select(BV) %>% |
|
|
307 |
unlist() |
|
|
308 |
|
|
|
309 |
|
|
|
310 |
if(is.null(FeaturesToQuantile)){ |
|
|
311 |
Master4ClassificationwithClassAppQuantAug <- |
|
|
312 |
Master4ClassificationwithClass |
|
|
313 |
}else{ |
|
|
314 |
|
|
|
315 |
ThrehsoldsTraining <- Master4ClassificationwithClass[trainSamples,] %>% |
|
|
316 |
filter(CancerStatus==F) %>% |
|
|
317 |
summarise_at(.vars = FeaturesToQuantile,# to implement ramp you can manipulate here |
|
|
318 |
.funs = funs(quantile(.,probs = QuantileF))) |
|
|
319 |
|
|
|
320 |
Master4ClassificationwithClassAppQuantAug <- # to implement ramp you can manipulate here |
|
|
321 |
Master4ClassificationwithClass %>% |
|
|
322 |
mutate_(.dots = setNames(paste("QuantileFunction(", |
|
|
323 |
names(ThrehsoldsTraining), |
|
|
324 |
",", |
|
|
325 |
ThrehsoldsTraining,")", |
|
|
326 |
sep = ""), |
|
|
327 |
names(ThrehsoldsTraining))) |
|
|
328 |
|
|
|
329 |
rownames(Master4ClassificationwithClassAppQuantAug) <- rownames(Master4ClassificationwithClass) |
|
|
330 |
} |
|
|
331 |
#if(Methods[k]=="Logit"){ |
|
|
332 |
|
|
|
333 |
thislogit <- glmnet(x= Master4ClassificationwithClassAppQuantAug[trainSamples,] %>% |
|
|
334 |
dplyr::select(-CancerStatus) %>% |
|
|
335 |
as.matrix(), |
|
|
336 |
y=Master4ClassificationwithClassAppQuantAug[trainSamples,"CancerStatus"], |
|
|
337 |
#lambda = lambda.best, |
|
|
338 |
penalty.factor = PenaltyFactor, |
|
|
339 |
family="binomial", |
|
|
340 |
lower.limits=mylower) |
|
|
341 |
ProbPredictions[testSamples] <- predict(thislogit, |
|
|
342 |
Master4ClassificationwithClassAppQuantAug[testSamples,]%>% |
|
|
343 |
dplyr::select(-CancerStatus) %>% |
|
|
344 |
as.matrix(), |
|
|
345 |
type="response", |
|
|
346 |
s=lambda.best) %>% |
|
|
347 |
unlist() |
|
|
348 |
|
|
|
349 |
for( k in Master4ClassificationwithClassAppQuantAug%>% colnames() %>% setdiff("CancerStatus")){ |
|
|
350 |
z <- Master4ClassificationwithClassAppQuantAug[testSamples,] %>% |
|
|
351 |
dplyr::select(-CancerStatus) %>% |
|
|
352 |
as.matrix() |
|
|
353 |
z[,setdiff(colnames(z),k)] <- 0 |
|
|
354 |
|
|
|
355 |
ProbPredictionsMinusFeature[testSamples,k]<- predict(thislogit, |
|
|
356 |
z, |
|
|
357 |
type="response", |
|
|
358 |
s=lambda.best) %>% |
|
|
359 |
unlist() |
|
|
360 |
|
|
|
361 |
z <- Master4ClassificationwithClassAppQuantAug[testSamples,] %>% |
|
|
362 |
dplyr::select(-CancerStatus) %>% |
|
|
363 |
as.matrix() |
|
|
364 |
z[,k] <- 0 |
|
|
365 |
|
|
|
366 |
ProbPredictionsDropFeature[testSamples,k]<- predict(thislogit, |
|
|
367 |
z, |
|
|
368 |
type="response", |
|
|
369 |
s=lambda.best) %>% |
|
|
370 |
unlist() |
|
|
371 |
} |
|
|
372 |
#}else if(Methods[k]=="RF"){ |
|
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
|
376 |
|
|
|
377 |
# ThisRF <- randomForest(as.factor(CancerStatus)~., |
|
|
378 |
# data =Master4ClassificationwithClassAppQuantAug[,c("CancerStatus",RFFeatures)] , |
|
|
379 |
# subset=trainSamples, |
|
|
380 |
# cutoff = c(0.15,0.85)) |
|
|
381 |
# ProbPredictions[testSamples] <- predict(ThisRF,Master4ClassificationwithClassAppQuantAug[testSamples,],type="prob")[,"TRUE"] |
|
|
382 |
#} |
|
|
383 |
} |
|
|
384 |
|
|
|
385 |
ThisThresh99 <- ProbPredictions[which(Master4ClassificationwithClass$CancerStatus==F)] %>% |
|
|
386 |
quantile(SpecSet) |
|
|
387 |
Allpredictions <- ProbPredictions>ThisThresh99 |
|
|
388 |
AllThresh99NIter[[j]] <- ThisThresh99 |
|
|
389 |
AllpredictionsNIter[[j]] <- Allpredictions |
|
|
390 |
AllProbPredictionsNIter[[j]] <- ProbPredictions |
|
|
391 |
AllProbPredictionsMinusFeatureNIter[[j]] <- as.data.frame(ProbPredictionsMinusFeature) %>% |
|
|
392 |
rownames_to_column("BV") %>% |
|
|
393 |
mutate( CancerStatus = |
|
|
394 |
Master4ClassificationwithClass[rownames(ProbPredictionsMinusFeature), |
|
|
395 |
"CancerStatus"]) |
|
|
396 |
AllProbPredictionsDropFeatureNIter[[j]] <- as.data.frame(ProbPredictionsDropFeature) %>% |
|
|
397 |
rownames_to_column("BV") %>% |
|
|
398 |
mutate( CancerStatus = |
|
|
399 |
Master4ClassificationwithClass[rownames(ProbPredictionsMinusFeature), |
|
|
400 |
"CancerStatus"]) |
|
|
401 |
AllSensitivity[[j]] <- Allpredictions[which(Master4ClassificationwithClass$CancerStatus==T)] %>% |
|
|
402 |
mean() |
|
|
403 |
|
|
|
404 |
Master4ClassificationwithClassAll[[j]] <- cbind(Master4ClassificationwithClass, |
|
|
405 |
fold= |
|
|
406 |
MutationsThisRound[rownames(Master4ClassificationwithClass),"fold"]) |
|
|
407 |
|
|
|
408 |
#} |
|
|
409 |
|
|
|
410 |
|
|
|
411 |
} |
|
|
412 |
|
|
|
413 |
return(list(Master4ClassificationwithClassAll=Master4ClassificationwithClassAll, |
|
|
414 |
AllThresh99NIter=AllThresh99NIter, |
|
|
415 |
AllpredictionsNIter=AllpredictionsNIter, |
|
|
416 |
AllProbPredictionsNIter=AllProbPredictionsNIter, |
|
|
417 |
AllProbPredictionsMinusFeatureNIter =AllProbPredictionsMinusFeatureNIter, |
|
|
418 |
AllProbPredictionsDropFeatureNIter = AllProbPredictionsDropFeatureNIter, |
|
|
419 |
AllSensitivity=AllSensitivity, |
|
|
420 |
AllSensitivitycvglmnet=max(AllSensity,na.rm = T), # This comes out of Logit cv and more reliable |
|
|
421 |
AllcvglmnetCalls = Alllogit$fit.preval[,which.max(AllSensity)], |
|
|
422 |
ProteinsHigherCancer=ProteinsHigherCancer, |
|
|
423 |
NoMutations=is.null(Mutations), |
|
|
424 |
Proteins2Use = Proteins2Use, |
|
|
425 |
Alllogit=Alllogit, |
|
|
426 |
AlllogitFeatures=AlllogitFeatures, |
|
|
427 |
#RFFeatures=RFFeatures, |
|
|
428 |
lambda.best=lambda.best)) |
|
|
429 |
|
|
|
430 |
} |
|
|
431 |
|
|
|
432 |
|
|
|
433 |
|
|
|
434 |
#Preparing Data |
|
|
435 |
|
|
|
436 |
Master_Protein_Dataset_12_9_17_Logist <- read.xlsx2("MEGA Protein Dataset for Logistic Regression, December 9, 2017.xlsx", |
|
|
437 |
sheetIndex = 1, |
|
|
438 |
stringsAsFactors = F) |
|
|
439 |
|
|
|
440 |
|
|
|
441 |
Master_Protein_Dataset_12_9_17_RF <- read.xlsx2("MEGA Protein Dataset for Random Forest, December 9, 2017.xlsx", |
|
|
442 |
sheetIndex = 1, |
|
|
443 |
stringsAsFactors = F) |
|
|
444 |
|
|
|
445 |
Master_Protein_Filtered_RF <- |
|
|
446 |
#Master_Protein_Dataset_20_10_17 %>% |
|
|
447 |
Master_Protein_Dataset_12_9_17_RF %>% |
|
|
448 |
#filter(!(BV. %in% PostSample)) %>% |
|
|
449 |
#Master_Protein_Dataset_9_16_17 %>% |
|
|
450 |
#filter(BV. %in% Master_Protein_Dataset_1_10_17$BV.)%>% |
|
|
451 |
dplyr::select(-`LRG.1`,-Vitronectin) |
|
|
452 |
|
|
|
453 |
|
|
|
454 |
TissueType_RFData <- setNames(Master_Protein_Filtered_RF$Sample.Type,Master_Protein_Filtered_RF$BV.) |
|
|
455 |
# ajdusting for limits of detection for each protein? |
|
|
456 |
OnlyProteins_RF <- Master_Protein_Filtered_RF %>% |
|
|
457 |
|
|
|
458 |
dplyr::select(-BV.,-Stage,-Sample.Type) %>% |
|
|
459 |
apply(MARGIN = 2,FUN = as.numeric) %>% |
|
|
460 |
as.data.frame() |
|
|
461 |
|
|
|
462 |
|
|
|
463 |
OnlyProteins_RF[is.na(OnlyProteins_RF)] <- 0 |
|
|
464 |
|
|
|
465 |
colnames(OnlyProteins_RF) <- gsub(colnames(OnlyProteins_RF),pattern = "[.]",replacement = "") |
|
|
466 |
rownames(OnlyProteins_RF) <- Master_Protein_Filtered_RF$BV. |
|
|
467 |
|
|
|
468 |
|
|
|
469 |
Master_Protein_Filtered_LR <- |
|
|
470 |
#Master_Protein_Dataset_20_10_17 %>% |
|
|
471 |
Master_Protein_Dataset_12_9_17_Logist %>% |
|
|
472 |
#filter(!(BV. %in% PostSample)) %>% |
|
|
473 |
#Master_Protein_Dataset_9_16_17 %>% |
|
|
474 |
#filter(BV. %in% Master_Protein_Dataset_1_10_17$BV.)%>% |
|
|
475 |
dplyr::select(-`LRG.1`,-Vitronectin) |
|
|
476 |
|
|
|
477 |
# ajdusting for limits of detection for each protein? |
|
|
478 |
OnlyProteins_LR <- Master_Protein_Filtered_LR %>% |
|
|
479 |
dplyr::select(-BV.,-Stage,-Sample.Type) %>% |
|
|
480 |
apply(MARGIN = 2,FUN = as.numeric) %>% |
|
|
481 |
as.data.frame() |
|
|
482 |
|
|
|
483 |
OnlyProteins_LR[is.na(OnlyProteins_LR)] <- 0 |
|
|
484 |
|
|
|
485 |
colnames(OnlyProteins_LR) <- gsub(colnames(OnlyProteins_LR),pattern = "[.]",replacement = "") |
|
|
486 |
rownames(OnlyProteins_LR) <- Master_Protein_Filtered_LR$BV. |
|
|
487 |
|
|
|
488 |
|
|
|
489 |
|
|
|
490 |
## CtdNA |
|
|
491 |
|
|
|
492 |
load("maxValuesPerSample_20171209_FORJosh.rda") |
|
|
493 |
sampleTable_ALLModified <- |
|
|
494 |
sampleTable_ALL[,c("iteration","fold","maxOmega","CosmicCount","Sample.Category")] %>% |
|
|
495 |
rownames_to_column("BV") %>% |
|
|
496 |
mutate(BV=ifelse(iteration==1,BV,substr(BV,1,nchar(BV)-1))) |
|
|
497 |
|
|
|
498 |
NewCtDNA_ALLRounds <- sampleTable_ALLModified %>% |
|
|
499 |
filter(BV %in% Master_Protein_Filtered_LR$BV.)%>% |
|
|
500 |
transmute(BV=BV, |
|
|
501 |
iteration=iteration, |
|
|
502 |
fold=fold, |
|
|
503 |
maxOmega= maxOmega#,maxOmegaThresh), |
|
|
504 |
#CosmicCount=CosmicCount, |
|
|
505 |
#maxOmegaCount= QFunclog(CosmicCount*maxOmega,maxOmegaCountThresh) |
|
|
506 |
) |
|
|
507 |
|
|
|
508 |
NoNewCtDNA <- setdiff(Master_Protein_Filtered_LR$BV.,NewCtDNA_ALLRounds$BV) |
|
|
509 |
NoNewCtDNA_ALLRounds <- bind_rows(sapply(unique(NewCtDNA_ALLRounds$iteration), |
|
|
510 |
FUN = function(x) |
|
|
511 |
data.frame(BV=NoNewCtDNA, |
|
|
512 |
iteration=x, |
|
|
513 |
fold=as.numeric(balanced.cv.fold(NoNewCtDNA, |
|
|
514 |
length(unique(NewCtDNA_ALLRounds$fold)))), |
|
|
515 |
maxOmega=0), |
|
|
516 |
simplify = F) ) |
|
|
517 |
|
|
|
518 |
NewCtDNA_ALLRounds_Modified <- rbind(NewCtDNA_ALLRounds,NoNewCtDNA_ALLRounds) |
|
|
519 |
|
|
|
520 |
|
|
|
521 |
|
|
|
522 |
### RF Analysis######### |
|
|
523 |
#### with CtDNA |
|
|
524 |
|
|
|
525 |
OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData <-cv.CancervsNormal.QuantileReplace.Mutatation.knownCV( |
|
|
526 |
CancerStatus = |
|
|
527 |
1*(Master_Protein_Filtered_RF$Sample.Type !="Normal"), |
|
|
528 |
Proteins = |
|
|
529 |
OnlyProteins_RF %>% |
|
|
530 |
dplyr::select( |
|
|
531 |
CA199, |
|
|
532 |
CEA, |
|
|
533 |
CA125, |
|
|
534 |
#AFP, |
|
|
535 |
Prolactin, |
|
|
536 |
HGF, |
|
|
537 |
OPN , |
|
|
538 |
TIMP1, |
|
|
539 |
#Follistatin, |
|
|
540 |
#GCSF, |
|
|
541 |
#HE4, |
|
|
542 |
#CA153, |
|
|
543 |
#IL6, |
|
|
544 |
#Midkine, |
|
|
545 |
Myeloperoxidase#, |
|
|
546 |
#CYFRA211, |
|
|
547 |
#Galectin3#, |
|
|
548 |
#Thrombospondin2 |
|
|
549 |
) %>% |
|
|
550 |
as.matrix() , |
|
|
551 |
|
|
|
552 |
ProteinsHigherCancer = T, |
|
|
553 |
NewCtDNA_ALLRounds_Modified %>% |
|
|
554 |
mutate(maxOmega=QFuncjumpramp(maxOmega,0) |
|
|
555 |
#, |
|
|
556 |
#maxOmegaCount=QFunclog(maxOmegaCount,Inf) |
|
|
557 |
), |
|
|
558 |
FeaturesToQuantile = |
|
|
559 |
c("CA199", |
|
|
560 |
"CEA", |
|
|
561 |
"CA125", |
|
|
562 |
"Prolactin", |
|
|
563 |
"HGF", |
|
|
564 |
"OPN" , |
|
|
565 |
"TIMP1", |
|
|
566 |
#"IL6", |
|
|
567 |
#"Midkine", |
|
|
568 |
"Myeloperoxidase"), |
|
|
569 |
QuantileFunction = function(x,Threshold) |
|
|
570 |
ifelse(x>Threshold,x,0), |
|
|
571 |
QuantileF = 0.95, |
|
|
572 |
ForcePositiveCoeff = F, |
|
|
573 |
NoLassoPenaly = T ) |
|
|
574 |
|
|
|
575 |
|
|
|
576 |
### Removing Protein Results |
|
|
577 |
mainPath <- "Results/" |
|
|
578 |
dir.create(mainPath,recursive = T) |
|
|
579 |
|
|
|
580 |
sink(paste(mainPath,"ResultSummary.txt",sep = "")) |
|
|
581 |
print("---------RF Data Results with 8 Proteins---------") |
|
|
582 |
printRemoveDropResults(ThisResult = OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData) |
|
|
583 |
|
|
|
584 |
ProbsRFData <- ProbsEachRound(OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData, |
|
|
585 |
csvFile = paste(mainPath,"RFDatawithCtdna8proteins.csv",sep = "") ) |
|
|
586 |
|
|
|
587 |
LudaObject <- Generate4LudaObject(ThisResult = OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData, |
|
|
588 |
rdaFile = paste(mainPath,"ForLuda8proteins.rda",sep = "") ) |
|
|
589 |
|
|
|
590 |
|
|
|
591 |
|
|
|
592 |
|
|
|
593 |
#Print scores |
|
|
594 |
### Save Logit Scores |
|
|
595 |
dir.create(paste(mainPath,"OnlyThisProtein/",sep = ""),recursive = T) |
|
|
596 |
writeCSVMultiple(rownames(OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData$AllProbPredictionsMinusFeatureNIter) %>% |
|
|
597 |
sapply(FUN = function(x) OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData$AllProbPredictionsMinusFeatureNIter[[x,"LR"]]%>% |
|
|
598 |
mutate(Threshold=OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData$AllThresh99NIter[[x,"LR"]]),simplify = F), |
|
|
599 |
file = paste(mainPath,"OnlyThisProtein/",sep = "")) |
|
|
600 |
|
|
|
601 |
### Save Logit Scores |
|
|
602 |
dir.create(paste(mainPath,"RemoveThisPrtoein/",sep = ""),recursive = T) |
|
|
603 |
|
|
|
604 |
writeCSVMultiple(rownames(OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData$AllProbPredictionsDropFeatureNIter) %>% |
|
|
605 |
sapply(FUN = function(x) OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData$AllProbPredictionsDropFeatureNIter[[x,"LR"]]%>% |
|
|
606 |
mutate(Threshold=OnlyTenProteinsNoCosmicRemovedNewTemplatesRFData$AllThresh99NIter[[x,"LR"]]),simplify = F), |
|
|
607 |
file = paste(mainPath,"RemoveThisPrtoein/",sep = "")) |
|
|
608 |
|
|
|
609 |
|
|
|
610 |
### without CtdNA |
|
|
611 |
|
|
|
612 |
|
|
|
613 |
OnlyTenProteinsNoCosmicRemovedNewTemplatesRFDatawithoutCtDNA <-cv.CancervsNormal.QuantileReplace.Mutatation.knownCV( |
|
|
614 |
CancerStatus = |
|
|
615 |
1*(Master_Protein_Filtered_RF$Sample.Type !="Normal"), |
|
|
616 |
Proteins = |
|
|
617 |
OnlyProteins_RF %>% |
|
|
618 |
dplyr::select( |
|
|
619 |
CA199, |
|
|
620 |
CEA, |
|
|
621 |
CA125, |
|
|
622 |
#AFP, |
|
|
623 |
Prolactin, |
|
|
624 |
HGF, |
|
|
625 |
OPN , |
|
|
626 |
TIMP1, |
|
|
627 |
#Follistatin, |
|
|
628 |
#GCSF, |
|
|
629 |
#HE4, |
|
|
630 |
#CA153, |
|
|
631 |
#IL6, |
|
|
632 |
#Midkine, |
|
|
633 |
Myeloperoxidase#, |
|
|
634 |
#CYFRA211, |
|
|
635 |
#Galectin3#, |
|
|
636 |
#Thrombospondin2 |
|
|
637 |
) %>% |
|
|
638 |
as.matrix() , |
|
|
639 |
|
|
|
640 |
ProteinsHigherCancer = T, |
|
|
641 |
NewCtDNA_ALLRounds_Modified %>% |
|
|
642 |
mutate(maxOmega=QFuncjumpramp(maxOmega,Inf) |
|
|
643 |
#, |
|
|
644 |
#maxOmegaCount=QFunclog(maxOmegaCount,Inf) |
|
|
645 |
), |
|
|
646 |
FeaturesToQuantile = |
|
|
647 |
c("CA199", |
|
|
648 |
"CEA", |
|
|
649 |
"CA125", |
|
|
650 |
"Prolactin", |
|
|
651 |
"HGF", |
|
|
652 |
"OPN" , |
|
|
653 |
"TIMP1", |
|
|
654 |
#"IL6", |
|
|
655 |
#"Midkine", |
|
|
656 |
"Myeloperoxidase"), |
|
|
657 |
QuantileFunction = function(x,Threshold) |
|
|
658 |
ifelse(x>Threshold,x,0), |
|
|
659 |
QuantileF = 0.95, |
|
|
660 |
ForcePositiveCoeff = F, |
|
|
661 |
NoLassoPenaly = T ) |
|
|
662 |
|
|
|
663 |
|
|
|
664 |
printRemoveDropResults(ThisResult = OnlyTenProteinsNoCosmicRemovedNewTemplatesRFDatawithoutCtDNA) |
|
|
665 |
|
|
|
666 |
ProbsRFData <- ProbsEachRound(OnlyTenProteinsNoCosmicRemovedNewTemplatesRFDatawithoutCtDNA, |
|
|
667 |
csvFile = paste(mainPath,"RFDatawithCtdna8proteinswithoutCtdna.csv",sep = "") ) |
|
|
668 |
|
|
|
669 |
|
|
|
670 |
|
|
|
671 |
|
|
|
672 |
### Removing Each Protein at a time |
|
|
673 |
|
|
|
674 |
EightProteins <- c("CA199", |
|
|
675 |
"CEA", |
|
|
676 |
"CA125", |
|
|
677 |
"Prolactin", |
|
|
678 |
"HGF", |
|
|
679 |
"OPN" , |
|
|
680 |
"TIMP1", |
|
|
681 |
"Myeloperoxidase") |
|
|
682 |
|
|
|
683 |
SensOnceEightProteins <- setNames(rep(0,length(EightProteins)),EightProteins) |
|
|
684 |
|
|
|
685 |
for(i in seq_along(EightProteins)){ |
|
|
686 |
|
|
|
687 |
EightProteinsRemoved <- setdiff(EightProteins,EightProteins[i]) |
|
|
688 |
|
|
|
689 |
OnlyTenProteinsNoCosmicRemovedNewTemplatesRFDataRemoveOneProtein <- |
|
|
690 |
cv.CancervsNormal.QuantileReplace.Mutatation.knownCV( |
|
|
691 |
CancerStatus = |
|
|
692 |
1*(Master_Protein_Filtered_RF$Sample.Type !="Normal"), |
|
|
693 |
Proteins = |
|
|
694 |
OnlyProteins_RF[, EightProteinsRemoved] %>% |
|
|
695 |
as.matrix() , |
|
|
696 |
|
|
|
697 |
ProteinsHigherCancer = T, |
|
|
698 |
NewCtDNA_ALLRounds_Modified %>% |
|
|
699 |
mutate(maxOmega=QFuncjumpramp(maxOmega,0) |
|
|
700 |
#, |
|
|
701 |
#maxOmegaCount=QFunclog(maxOmegaCount,Inf) |
|
|
702 |
), |
|
|
703 |
FeaturesToQuantile = |
|
|
704 |
EightProteinsRemoved, |
|
|
705 |
QuantileFunction = function(x,Threshold) |
|
|
706 |
ifelse(x>Threshold,x,0), |
|
|
707 |
QuantileF = 0.95, |
|
|
708 |
ForcePositiveCoeff = F, |
|
|
709 |
NoLassoPenaly = T ) |
|
|
710 |
|
|
|
711 |
ProbsRFData <- ProbsEachRound(OnlyTenProteinsNoCosmicRemovedNewTemplatesRFDataRemoveOneProtein, |
|
|
712 |
csvFile = paste(mainPath,"RFDatawithCtdna8proteinswithout",EightProteins[i], ".csv",sep = "") ) |
|
|
713 |
|
|
|
714 |
|
|
|
715 |
SensOnceEightProteins[i] <- OnlyTenProteinsNoCosmicRemovedNewTemplatesRFDataRemoveOneProtein$AllSensitivity %>% |
|
|
716 |
unlist() %>% |
|
|
717 |
mean() |
|
|
718 |
|
|
|
719 |
} |
|
|
720 |
|
|
|
721 |
cat("--- Remove Protein------\n") |
|
|
722 |
print(t(t(SensOnceEightProteins))) |
|
|
723 |
|
|
|
724 |
sink() |