|
a |
|
b/Analysis_2.R |
|
|
1 |
library(openxlsx) |
|
|
2 |
library(plyr) |
|
|
3 |
library(dplyr) |
|
|
4 |
|
|
|
5 |
pt = read.xlsx("MEGA PT Data for Lu%2c August 21%2c 2017.xlsx", sheet = 1) |
|
|
6 |
pt$mutID = paste(pt$Chrom, pt$Position,pt$BaseFrom,pt$BaseTo) |
|
|
7 |
pt$Matched.Plasma = as.character(pt$Matched.Plasma) |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
cancer = c("CRC","Lung","Breast","Pancreas","Ovarian","Esophagus","Liver","Stomach","Small Intestine","Gastric","Ovary","pancreas") |
|
|
11 |
|
|
|
12 |
uidThr=200 |
|
|
13 |
## threshold for omega value |
|
|
14 |
thres = 1.9 |
|
|
15 |
|
|
|
16 |
final_cv = data.frame() |
|
|
17 |
fp_cv = data.frame() |
|
|
18 |
|
|
|
19 |
for(m in 1:10){ |
|
|
20 |
allResults = c() |
|
|
21 |
cv = matrix(0, nrow = 10, ncol = 3) |
|
|
22 |
colnames(cv) = c("FP","Sens", "Con") |
|
|
23 |
|
|
|
24 |
for(c in 1:10){ |
|
|
25 |
|
|
|
26 |
load(paste0("PvalueRatio1209cv_5perc_bl_",m,"_", c,"_1208data.rda")) |
|
|
27 |
|
|
|
28 |
result$fail = (result$UID1<uidThr)+(result$UID2<uidThr)+(result$UID3<uidThr)+ |
|
|
29 |
(result$UID4<uidThr)+(result$UID5<uidThr)+(result$UID6<uidThr) |
|
|
30 |
result = result[result$fail<=2,] |
|
|
31 |
|
|
|
32 |
## difference between average MAF in the test and the max MAF in the normal controls |
|
|
33 |
result$diff = result$aveMAF-result$max |
|
|
34 |
result$diff_r = (result$aveMAF-result$max)/(result$max+10e-6) |
|
|
35 |
result$PT.Avg.MAF[is.na(result$PT.Avg.MAF)] = -1 |
|
|
36 |
result$PT.Avg.MAF = as.numeric(result$PT.Avg.MAF) |
|
|
37 |
|
|
|
38 |
ratio = matrix(c(result$r1, result$r2,result$r3,result$r4, result$r5,result$r6), nrow = nrow(result), ncol = 6) |
|
|
39 |
uid = matrix(c(result$UID1,result$UID2, result$UID3,result$UID4,result$UID5,result$UID6), nrow = nrow(result), ncol = 6) |
|
|
40 |
|
|
|
41 |
order.ratio = t(apply(ratio, 1, order)) |
|
|
42 |
|
|
|
43 |
for(i in 1:nrow(ratio)){ |
|
|
44 |
ratio[i,] = ratio[i,][order.ratio[i,]] |
|
|
45 |
uid[i,] = uid[i,][order.ratio[i,]] |
|
|
46 |
} |
|
|
47 |
|
|
|
48 |
uid[uid<uidThr] = 0 |
|
|
49 |
|
|
|
50 |
## eliminate the min and max wells in the testSet |
|
|
51 |
result$omega = rowSums(log(ratio[,-c(1,6)])*uid[,-c(1,6)])/rowSums(uid[,-c(1,6)]) |
|
|
52 |
|
|
|
53 |
result$omega[is.na(result$omega)] = Inf |
|
|
54 |
result$class = FALSE |
|
|
55 |
result$class = (result$omega>=thres) |
|
|
56 |
result$iteration = m |
|
|
57 |
result$fold = c |
|
|
58 |
## normal plasmas in the testSet |
|
|
59 |
nltemp = setdiff(nlpls,nlt) |
|
|
60 |
|
|
|
61 |
## summarizing results |
|
|
62 |
summ = ddply(result, .(Template,Sample.Category), summarise, PT = max(PT.Avg.MAF*class), class = max(class)) |
|
|
63 |
|
|
|
64 |
cv[c,1] = sum(summ$class[summ$Template %in% nltemp])/length(nltemp) |
|
|
65 |
cv[c,2] = sum(summ$class[summ$Sample.Category %in% cancer])/nrow(summ[summ$Sample.Category %in% cancer,]) |
|
|
66 |
|
|
|
67 |
check = summ[summ$class==TRUE & (summ$Sample.Category %in% cancer) & (summ$Template %in% pt$Matched.Plasma),] |
|
|
68 |
cv[c,3] = sum(check$PT>=1)/sum(check$PT>=0) |
|
|
69 |
|
|
|
70 |
allResults = rbind(allResults,result) |
|
|
71 |
|
|
|
72 |
} |
|
|
73 |
save(allResults, file = paste0("allResults_fromLuMethod_",m,"_20171209.rda")) |
|
|
74 |
|
|
|
75 |
print(m) |
|
|
76 |
cv = data.frame(cv) |
|
|
77 |
final_cv = rbind.data.frame(final_cv,cv) |
|
|
78 |
} |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
|
82 |
sampleTable_ALL = data.frame() |
|
|
83 |
for(m in 1:10){ |
|
|
84 |
load(file = paste0("allResults_fromLuMethod_",m,"_20171209.rda")) |
|
|
85 |
|
|
|
86 |
# subset by sample omega values and mutations |
|
|
87 |
sampleOmegaList = tapply(allResults[,'omega'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) |
|
|
88 |
sampleMutList = tapply(allResults[,'mutID'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) |
|
|
89 |
sampleCosmicList = tapply(allResults[,'CosmicCount'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) |
|
|
90 |
sampleGeneList = tapply(allResults[,'Gene'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) |
|
|
91 |
sampleAmpList = tapply(allResults[,"ampMatchName"], INDEX = allResults[,'Template'], FUN = function(x)return(x)) |
|
|
92 |
|
|
|
93 |
# find max value |
|
|
94 |
sampleMaxS = unlist(tapply(allResults[,'omega'], INDEX = allResults[,'Template'], FUN = which.max, simplify = T)) |
|
|
95 |
|
|
|
96 |
maxS = sapply(names(sampleMaxS), function(i) sampleOmegaList[[i]][sampleMaxS[i]]) |
|
|
97 |
maxSmut = sapply(names(sampleMaxS), function(i) sampleMutList[[i]][sampleMaxS[i]]) |
|
|
98 |
cosm = sapply(names(sampleMaxS), function(i) sampleCosmicList[[i]][sampleMaxS[i]]) |
|
|
99 |
gene = sapply(names(sampleMaxS), function(i) sampleGeneList[[i]][sampleMaxS[i]]) |
|
|
100 |
amp = sapply(names(sampleMaxS), function(i) sampleAmpList[[i]][sampleMaxS[i]]) |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
sampleTable = allResults[,c('Template','Sample.Category',"iteration","fold")] |
|
|
104 |
sampleTable = sampleTable[!duplicated(sampleTable[,1]),] |
|
|
105 |
rownames(sampleTable) = sampleTable[,1] |
|
|
106 |
sampleTable = cbind(sampleTable,maxOmega = maxS[rownames(sampleTable)], maxO_mut = maxSmut[rownames(sampleTable)], |
|
|
107 |
CosmicCount = cosm[rownames(sampleTable)], gene = gene[rownames(sampleTable)], ampMatchName = amp[rownames(sampleTable)]) |
|
|
108 |
|
|
|
109 |
sampleTable$remove = paste(sampleTable$Template,sampleTable$maxO_mut) |
|
|
110 |
sampleTable = sampleTable[,-1] |
|
|
111 |
|
|
|
112 |
uid_matrix = allResults[,c(1:51)] |
|
|
113 |
uid_matrix_subset = uid_matrix[match(sampleTable$remove,uid_matrix$remove),] |
|
|
114 |
|
|
|
115 |
sampleTable = cbind(sampleTable,uid_matrix_subset) |
|
|
116 |
|
|
|
117 |
#save(sampleTable, file = 'omegaPerSample_20171019.rda') |
|
|
118 |
|
|
|
119 |
# add maximum diff and diff_r per sample |
|
|
120 |
diff = unlist(tapply(allResults[,'diff'], INDEX = allResults[,'Template'], FUN = max, na.rm = T, simplify = T)) |
|
|
121 |
diff_r = unlist(tapply(allResults[,'diff_r'], INDEX = allResults[,'Template'], FUN = max, na.rm = T, simplify = T)) |
|
|
122 |
sampleTable_diff = cbind(sampleTable,maxDiff = diff[rownames(sampleTable)],maxDiff_r = diff_r[rownames(sampleTable)]) |
|
|
123 |
sampleTable_ALL = rbind.data.frame(sampleTable_ALL, sampleTable_diff) |
|
|
124 |
} |
|
|
125 |
save(sampleTable_ALL, file = 'maxValuesPerSample_20171209_FORJosh.rda') |
|
|
126 |
|
|
|
127 |
|