[1422d3]: / steps / step_B_registration.m

Download this file

131 lines (94 with data), 3.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
function [] = step_B_registration(dirTest, dirUtilities, ext, fidLogs, logS, savefile, plotFigures)
%dbname
dbname = 'ALL_IDB';
%part
dbPart = 'ALL_IDB2';
%params
run('./params/params_registration.m');
%dirIn e Out
dirIn = [dirTest dbname '\' dbPart '\'];
dirOut = [dirIn 'ROI_' num2str(params.roiSize(1)) '/'];
dirOutColorNorm = [dirIn 'colorNorm\'];
mkdir_pers(dirOut, savefile);
mkdir_pers(dirOutColorNorm, savefile);
%dirResults
dirResults = './Results/';
mkdir_pers(dirResults, savefile);
fileSaveTest = [dirResults 'save.mat'];
%RESULTS: log file
timeStampRaw = datestr(datetime);
timeStamp = strrep(timeStampRaw, ':', '-');
if savefile && logS
logFile = [dirResults dbname '_log_' timeStamp '.txt'];
fidLog = fopen(logFile, 'w');
fidLogs{2} = fidLog;
end %if savefile && log
%loop
files = dir([dirIn '*.' ext]);
for i = 1 : numel(files)
% for i = [1 2 3 141 142 143]
%read im
filename = files(i).name;
im = imread([dirIn filename]);
%display
fprintf_pers(fidLogs, ['Im: ' filename]);
%super-resolution?
%illumination compensation?
%----------------------------------------------------------------------
%preprocessing
%deblur - 1shot maxpol
%im_deBlurred = deBlur1shotMaxPol(im, params);
%focus assessment
focusOriginal = assessFocusFQPath(im, filename, dirUtilities, plotFigures);
fprintf_pers(fidLogs, ['\tFocus: ' num2str(focusOriginal)]);
%skip de-focused images?
if focusOriginal > params.thFocus
fprintf_pers(fidLogs, '\tFocus low...');
%continue
end %if focus
%color adjust
imColorNorm = imNormalization(im, filename, plotFigures);
%save+
if savefile
imwrite(imColorNorm, [dirOutColorNorm filename]);
end %if save
%----------------------------------------------------------------------
%stain separation
[H, E, Bg] = deConvStain(im, filename, dirResults, plotFigures, savefile);
%----------------------------------------------------------------------
%segmentation
mask = segmentStain(im, imColorNorm, filename, dirResults, params, plotFigures, savefile);
%----------------------------------------------------------------------
%extraction of ROI
[ROI, errorV] = extractROI(im, filename, mask, dirResults, params, plotFigures, savefile);
if errorV == -1
fprintf_pers(fidLogs, '\tCannot extract ROI...\n');
continue
else %if errorV
fprintf_pers(fidLogs, '\tROI extracted');
end %if errorV
%write
if savefile
imwrite(ROI, [dirOut filename]);
end %if save
%----------------------------------------------------------------------
%structure
problem(i).filename = filename;
%class
[C, ~] = strsplit(filename, {'_', '.'});
problem(i).class = str2double(C{2});
%focus
problem(i).focus = focusOriginal;
%----------------------------------------------------------------------
%pause
if plotFigures
pause(1)
close all
pause(0.1)
end %if plotta
%newline
fprintf_pers(fidLogs, '\n');
end %for i
%----------------------------------------------------------------------
%save
save([dirOut 'classes.mat'], 'problem');