function [C, U, LUT, H] = FastFCMeans(im, c, q, opt)
% Partition N-dimensional grayscale image into c classes using a memory
% efficient implementation of the fuzzy c-means (FCM) clustering algorithm.
% Computational efficiency is achieved by using the histogram of image
% intensities during clustering instead of the raw image data.
%
% INPUT:
% - im : N-dimensional grayscale image in integer format.
% - c : positive integer greater than 1 specifying the number of
% clusters. c=2 is the default setting. Alternatively, c can be
% specified as a k-by-1 array of initial cluster (aka prototype)
% centroids.
% - q : fuzzy weighting exponent. q must be a real number greater than
% 1.1. q=2 is the default setting. Increasing q leads to an
% increased amount of fuzzification, while reducing q leads to
% crispier class memberships. Note that while in principle
% setting q==1 is equivalent to using a classical c-means
% algorithm, this setting cannot be used in practice because it
% produces an infinite exponent in the membership update formula.
% - opt : optional logical argument used to indicate how to initialize
% cluster centroids. If opt=true {default} then centroids are
% initialized are by sampling the intensity range at uniform
% intervals. If opt=false then the initial centroids are set
% using the c-means algorithm.
%
% OUTPUT :
% - C : 1-by-k array of cluster centroids.
% - U : L-by-k array of fuzzy class memberships, where k is the number
% of classes and L is the intensity range of the input image,
% such that L=numel(min(im(:)):max(im(:))).
% - LUT : L-by-1 array that specifies the intensity-class relations,
% where L is the dynamic intensity range of the input image.
% Specifically, LUT(1) corresponds to the (class) label assigned to
% min(im(:)) and LUT(L) corresponds to the label assigned
% to max(im(:)). LUT is used as input to 'apply_LUT' function to
% create a label image.
% - H : image histogram. If I=min(im(:)):max(im(:)) are the intensities
% present in the input image, then H(i) is the number of
% pixels/voxels with intensity I(i).
%
% AUTHOR : Anton Semechko (a.semechko@gmail.com)
%
% Default input arguments
if nargin<2 || isempty(c), c=2; end
if nargin<3 || isempty(q), q=2; end
if nargin<4 || isempty(opt), opt=true; end
% Basic error checking
if nargin<1 || isempty(im)
error('Insufficient number of input arguments')
end
msg='Revise variable used to specify class centroids. See function documentation for more info.';
if ~isnumeric(c) || ~isvector(c)
error(msg)
end
if numel(c)==1 && (~isnumeric(c) || round(c)~=c || c<2)
error(msg)
end
if ~isnumeric(q) || numel(q)~=1 || q<1.1
error('3rd input argument (q) must be a real number > 1.1')
end
if ~islogical(opt) || numel(opt)>1
error('4th input argument (opt) must a Boolean')
end
% Check image format
if isempty(strfind(class(im),'int'))
error('Input image must be specified in integer format (e.g. uint8, int16)')
end
% Intensity range
Imin=double(min(im(:)));
Imax=double(max(im(:)));
I=(Imin:Imax)';
% Initialize cluster centroids
if numel(c)>1 % user-defined centroids
C=c;
opt=true;
else % automatic initialization
if opt
dI=(Imax-Imin)/c;
C=Imin+dI/2:dI:Imax;
else
[C,~,H]=FastCMeans(im,c);
end
end
% Compute intensity histogram
if opt
H=hist(double(im(:)),I);
H=H(:);
end
clear im
% Update fuzzy memberships and cluster centroids
dC=Inf;
while dC>1E-3
C0=C;
% Distance to the centroids
D=abs(bsxfun(@minus,I,C));
D=D.^(2/(q-1))+eps;
% Compute fuzzy memberships
U=bsxfun(@times,D,sum(1./D,2));
U=1./(U+eps);
% Update the centroids
UH=bsxfun(@times,U.^q,H);
C=sum(bsxfun(@times,UH,I),1)./sum(UH,1);
C=sort(C,'ascend'); % enforce natural order
% Change in centroids
dC=max(abs(C-C0));
end
% Defuzzify
[~,LUT]=max(U,[],2);