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ABSTRACT

We presents a no-reference (NR) image sharpness metric based

on a visual sensitivity model. We propose that MaxPol con-

volution kernels are close approximation to this model and

capable of extracting meaningful features for image sharpness

assessment. Equipped by these kernels, we develop an efficient

pipeline to evaluate the out-of-focus level of input images by

decomposing the first and third order image differentials. The

associated kernels are regulated in higher cutoff frequencies

to balance out the information loss and noise sensitivity. We

use high order central moments to exploit sharpness scores in

wide range of frequency information. The experimental results

outperform the state-of-the-art methods in accuracy and speed.

Index Terms— Visual sensitivity, MaxPol convolution

kernels, No-reference image sharpness assessment

1. INTRODUCTION

The relative sensitivity of human visual cells are tuned with

respect to different spatial frequencies, where it is shown that

it is analogous to a power function magnitude in the frequency

domain [1–3]. Provided by an image, the average response of

visual cells at different frequencies is modeled by multiplying

such a sensitivity response to the amplitude spectrum of the

image for observation. Natural images usually follow a decay

spectrum of 1/ω, hence causing a uniform response in the

frequency domain observed by visual cells. When an image

is out-of-focus, its amplitude spectrum will be steeper than

1/ω, and in conclusion, it attenuates the average response in

the visual cells for higher frequencies. The implication of such

visual perception model is intriguing to understand how human

visual system (HVS) perform on subjective scoring for image

quality assessment (IQA) [4, 5]. From engineering point of

view, such model implies that HVS “deconvolves” visual con-

tent to grade the out-of-focus level of an image. In other words

the power magnitude response of visual sensitivity boosts high

frequencies for such assessment. In the context of signal pro-

cessing this is equivalent to a convolution problem by filtering

an image with impulse response of visual sensitivity function.

A close approximation to this sensitivity response is made

by finite impulse response (FIR) filters such as Laplacian or

gradient operators that highly correlate with image sharpness

scores made by human [6–9].

The numerical implementation of such FIR filters, how-

ever, are suboptimal and do not fully exploit the frequency

range for approximation accuracy. In this paper we bridge this

gap by introducing MaxPol filters [10, 11] as close approxima-

tion to visual sensitivity response, in which they are capable of

approximating high order image differentials by introducing

a balanced cutoff frequency to minimize the information loss

and noise sensitivities. Equipped with MaxPol design, we

tackle the problem of no-reference image sharpness assess-
ment (NRISA) that has been dominating the field of imaging in

the past few years [6–9, 12] to control the quality of acquired

images in many applications for processing, storage and com-

munication. Our proposed method for NRISA is of four-fold.

First, a variational decomposition of gray image is made by

MaxPol kernels of first and third order of derivatives. A cutoff

frequency is regulated with the filters to balance the informa-

tion loss and noise sensitivity. Second, a feature map is created

by horizontal and vertical decomposition in �1/2-norm space to

promoted the sparsity of image edges. An adaptive threshold is

introduced next to keep meaningful vector coefficients for pro-

cessing. Whereas, it is followed by high-order central moment

decomposition to extract informative features that are scattered

in wide image frequencies. We examine the performance of

the proposed method on four public subjectively-rated blur

image database. Experiments demonstrates the unique advan-

tage of the proposed method in terms of both accuracy and

computational complexity.

2. CONVOLUTION FILTER DESIGN

In this section we design a new set of convolutional kernels that

are scattered in different subbands of frequency domain. These

filters are of high order of frequency polynomials, that are

equivalent to high order differential operators in spatial domain.

The response of this operator is determined by F(∂n/∂xn) =
(iω)n with F being the Fourier transform here. In particular,

we are interested to approximate an ideal lowpass filter

Hn
ωc

=

{
(iω)n, 0 ≤ ω ≤ ωc

0, else
(1)

where ωc is the cutoff frequency. The Spectral response of such

lowpass filter indicates that only the frequencies between 0 ≤
ω ≤ ωc are amplified in magnitude of nth order polynomial,

where the rest of the band is suppressed. We suspect that this is
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a close approximation to visual sensitivity response modeled

in [1–3]. For the purpose of numerical implementation we

use Maximally Polynomial (MaxPol) library introduced in

[10, 11] to generate variety of FIR kernels of different order

of differentiation and cutoff frequencies. Examples of the

filter spectra are shown in Figure 1 for different band designs.

Here, the filter polynomial is 8 and the frequency resolution of

subbands are π/8.
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Fig. 1. First and third order lowpass derivative filters designed

by MaxPol library with different cutoff frequencies ωc.
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Fig. 2. Subband decomposition of Monarch image using 4th

order of differentiation in two different bands. The image is

decomposed in both horizontal and vertical directions.

The practival implication of these filters are they decom-

pose different energy types in image edges. For instance,

associated filter with response H3
π
2

encodes edge types of third

order moments containing harmonic frequencies in the range

of ω ∈ [0, π
2 ]. Figure 2 demonstrates examples of different

order moments of decomposed Monarch image divided in dif-

ferent cutoff frequencies. As the band increases, high energy

with sharp edges are encoded.

3. FOCUS QUALITY MEASURMENT

In this section we elaborate on the steps taken to build the

focus quality metric from a discrete image in grayscale. The

pipeline contains four main operations discussed in subsequent

sections as follows.

MaxPol variational decomposition. We note the Max-

Pol lowpass FIR kernels by dnωc
to approximate the transfer

function in (1). The horizontal and vertical decomposition of

an image I ∈ R
N1×N2 using this kernel is obtained by

∇n
ωc
I =

[
I � dnωc

, I � dnωc

T
]T

. (2)

The selection of cutoff band ωc depends on the signal-to-noise-

ratio (SNR) of the measurements. Higher cutoffs should be

selected for high quality signals to avoid information loss. The

tap-length polynomial of the FIR filters are chosen 8 here

meaning that there are π
8 possible subband resolutions.

Feature map. Associated by the first and third order of

derivatives n ∈ {1, 3}, the corresponding feature maps are

calculated in � 1
2

–norm space as follows

Mn
ωc

=
(
|∇n

ωc
I(x)| 12 + |∇n

ωc
I(y)| 12

)2

. (3)

The feature map Mn
ωc

encodes the edge significance in perti-

nent � 1
2

–norm space. This promotes the sparsity of decom-

posed coefficients by weakening minor perturbations while

preserving significant coefficients related to image edges.

Adaptive hard-thresholding. Similar to [13], we keep

|Ω| dominant feature pixels from feature map Mn
ωc

to eliminate

shallow coefficients that are less related to focus features

M
n

ωc
= sortd(Mn

ωc
)k, k ∈ Ω ⊂ {1, . . . , N1N2} (4)

where, sortd is a sorting operator in descending form and the

notation |Ω| refers to cardinality of subset Ω. In addition, we

adaptively select the number of remaining pixels |Ω| from the

histogram distribution of absolute decomposed coefficients

|∇n
ωc
I| in (2) and map the approximated variance of distribu-

tion using a nonlinear activation function for adaptive selection

of meaningful coefficients

p(σ) =
1

5
(1− tanh(50σ − 5)) +

1

25
. (5)

Note that the approximated variance σ is normalized in scale of

maximum amplitude of |∇n
ωc
I|. The image plot of this projec-

tion is shown in Figure 3. A lower value of σ is an indication

of high sparse image in the derivative domain ∇n
ωc
I which we

need to keep more pixel coefficients to exploit pertinent focus

information. High σ is related to out-of-focus images where

we keep less coefficients to avoid over fitting problem.
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Fig. 3. Nonlinear mapping (sigmoid-like) function on normal-

ized variance

Central moments information. The selected coefficients

in (4) provide meaningful information from different layers
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of image differentials (first and third orders in this study).

Since we have deployed high accuracy MaxPol filters for such

decomposition, the coefficients on edge locations contain high

frequency components related to the evolution of image edge

that contain high order moment information. To fully exploit

information, it is required to measure high order moments

from statistical distribution. To this end, we measure the mth

central moment of M
n

ωc
for feature extraction defined by

μm = E

[
(M

n

ωc
− μ0)

m
]

(6)

where, E is the expectation and μ0 = 1
|Ω|

∑
k∈Ω M

n

ωc
(k) is

the average value of remaining features. The mth moment μm

encodes the mth power of deviation of variables M
n

ωc
from its

mean μ0. Separate measures are obtained for first and third

order derivatives, where the final sharpness score is calculated

by superimposing the feature moments in logarithmic scale

Sharpness Score = logμm1
+ log μm3

(7)

where, μm1
and μm3

are the central moments evaluated on

the first and third derivative orders in (6), respectively. The

logarithm function converts the power measurements in (6)

to linear scale. The tuning of the parameters m1 and m3 are

individually analyzed to yield optimum correlation results with

subjective scoring discussed in Section 4.

4. EXPERIMENTS

The empirical analysis of focus quality assessment here is

performed on four blur image database, including, LIVE [5],

CSIQ [14], TID2008 [15], and TID2013 [16], containing 145,

150, 100 and 125 Gaussian blurred images, respectively. The

blurred images in LIVE and CSIQ are measured using differ-

ence mean opinion score (DMOS), and TID2008 and TID2013

are measured using mean opinion score (MOS). We use two

criteria to evaluate the performance including Pearson linear

correlation coefficient (PLCC) to measure prediction accuracy

and Spearman rank order correlation (SRCC) to assess the

prediction monotonicity, all defined in [5, 17]. To evaluate the

latter performances, the objective scores are first mapped to

the same scale of subjective scores using a nonlinear fitting

model of five-parameter logistic regression function proposed

in [5]. Throughout the experiments we used AMD FX-8370E

8-Core CPU 3.30 GHz in Windows station for processing.

Fine tuning of central moments. Of possible choices

in (7), we need to select two combination of {m1,m2} to

yield the most correlation with subjective scores of database.

Figure 4 demonstrates such analysis by selecting different

combinations of order moments for all database. While we

achieve optimum performance in LIVE using lower order

moments for both derivatives, the rest of three database show

better performance by increasing the order moments of first

derivative decomposition. We found the parameters to be tuned

at m1 = 72 and m2 = 8 to achieve optimum performance

across all database.
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Fig. 4. SRCC performance evaluation of four database using

different central moment on feature maps M
n

ωc
created by first

and third order of derivatives i.e. n = {1, 3}

Performance evaluation. We compare the MaxPol sharp-

ness index against eight existing no-reference image sharp-

ness metrics including S3 [13], MLV [6], Kang’s CNN [18],

ARISMC [19], GPC [20], SPARISH [7], RISE [9], and Yu’s

CNN [21]. The performance evaluation of all methods are

studied in terms of correlation accuracies that are PLCC and

SRCC, and computational complexity of the algorithms im-

plemented for each method. This is measured by taking the

average time for processing one image pixel in 8-bit gray

level across the whole database, where low values indicates

high speed performance. Table 1 summarizes the results ob-

tained for above-mentioned methods. We highlight the top

two rank methods in each criteria using bold 1 light-green
and 2 dark-green colors, respectively. Furthermore, Ta-

ble 1 computes the weighted averages of PLCC and SRCC

over all database with respect to their size. We observe that

the proposed MaxPol sharpness index score highly correlates

with human visual perception and remarkably outperforms the

other eight competing methods. In particular, we achieve 1%
increase in overall PLCC and 1.73% increase in overall SRCC

compared to the second top rank method among the com-

petitors. Across four different database and two correlation

measures, MaxPol achieves five times the first rank position

and three times the second rank position compared to other

existing methods. Aside the significance of correlation accu-

racy, MaxPol is intuitively fast for practical implementation,

where it consumes minimal time for processing. For instance,

it takes 0.45 second for MaxPol to create sharpness score for

an image size of 1024× 1024. Whereas, this consumes 6.74
second to process the same image size using the second best
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Table 1. Focus score evaluation over four image database using different quality assessment methods. The performances are

reported in terms of correlation accuracies PLCC and SRCC, and computational complexities in terms of time take to process

one image pixel.
Method Year Measure LIVE [5] CSIQ [14] TID2008 [15] TID2013 [16] Overall CPU Time/Pixel (sec)

S3 [13] 2012
PLCC 0.9434 0.9175 0.8555 0.8816 0.9042

5.2930 × 10−5

SRCC 0.9436 0.9058 0.8480 0.8609 0.8944

MLV [6] 2014
PLCC 0.9590 0.9069 0.8584 0.8830 0.9063

3.1373 × 10−7

SRCC 0.9566 0.9246 0.8546 0.8785 0.9090

Kang’s CNN [18] 2014
PLCC 0.9625 0.7743 0.8803 0.9308 0.8848 ∗
SRCC 0.9831 0.7806 0.8496 0.9215 0.8842

ARISMC [19] 2015
PLCC 0.9590 0.9481 0.8544 0.8979 0.9211

7.2782 × 10−5

SRCC 0.9561 0.9314 0.8681 0.9015 0.9189

GPC [20] 2015
PLCC 0.9242 0.9018 0.8684 0.8665 0.8931

3.2723 × 10−7

SRCC 0.8369 0.8641 0.8729 0.8668 0.8589

SPARISH [7] 2016
PLCC 0.9595 0.9380 0.8900 0.9020 0.9261

1.4906 × 10−5

SRCC 0.9593 0.9139 0.8836 0.8940 0.9159

RISE [9] 2017
PLCC 0.9620 0.9463 0.9289 0.9419 0.9463

6.4270 × 10−6

SRCC 0.9493 0.9279 0.9218 0.9338 0.9341

Yu’s CNN [21] 2017
PLCC 0.9730 0.9416 0.9374 0.9221 0.9449 ∗
SRCC 0.9646 0.9253 0.9189 0.9135 0.9322

MaxPol 2018
PLCC 0.9735 0.9657 0.9359 0.9412 0.9563

4.2911 × 10−7

SRCC 0.9688 0.9481 0.9394 0.9448 0.9514
∗: the algorithm is implemented in GPU card with high speed and comparison here does not apply. Please refer to corresponding reference for more information.

method (RISE) for scoring.
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Fig. 5. Scatter plots between subjective and objective scores.

The objective scores are raw with no mapping.

The objective scores obtained from MaxPol method are

plotted in Figure 5 where there is no nonlinear functional map-

ping applied to make them linear. In fact, the proposed sharp-

ness score is corresponding linearly with respect to subjective

scores in three database of CSIQ, TID2008, and TID2013.

Such linear response is an indication of complying with the

reality of subjective score based on human visual assessment.

Noise sensitivity analysis. Our final analysis here is car-

ried out by considering independent and identically distributed

(i.i.d) Gaussian noise on input image for evaluation. This type

of noise is also considered as real noise application in many

natural imaging problems. Our goal here is to analyze the

sensitivity of MaxPol convolution kernels with respect such

noise artifacts. One of the main merits of the MaxPol kernels

is noise-robust approximation of derivative features due to

ability of setting cutoff frequency for numerical differentia-

tion. The Monte-Carlo simulation is done here for 10 average

simulations on generating random perturbations with different

standard deviation magnitudes σ ∈ {0.005, 0.01, . . . , 0.05}.

These perturbations are added to blurred images of selected

database prior to sharpness score evaluation. Figure 6 demon-

strates this simulation over all database to evaluate the PLCC

by means of different cutoff frequencies for MaxPol design.

As it shown, lower cutoffs are required to mitigate the correla-

tion loss over high noise perturbations.
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Fig. 6. PLCC performance on four database simulated in

different white Gaussian noise levels σnoise
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