function [deblurring_kernel] = deblurring_kernel_estimation(h_psf, model_type)
%%
switch model_type
case 'Gaussian'
feasible_range = [0, 0.9];
max_amplitude = 30;
case 'Laplacian'
feasible_range = [0, 1];
max_amplitude = 30;
end
N = 16;
%%
l_deblurring = 32;
P_cutoff = 2*l_deblurring-0;
x_polyomomial = [-l_deblurring:l_deblurring];
%%
l = (size(h_psf,1)-1)/2;
x = [-l:l];
%%
for channel = 1: size(h_psf, 2)
blurring_kernel = h_psf(:, channel)/sum(h_psf(:, channel));
[alpha_estimated, kernel_spectrum(:, channel), ...
omega, y_full, omega_selected, y_selected] = ...
specrum_fit(blurring_kernel, N, max_amplitude);
%%
y_fit_even = 0;
for n = 0: floor(N/2)
y_fit_even = y_fit_even + ...
(-1)^n*alpha_estimated(n+1)*omega.^(2*n);
end
y_fit = y_fit_even;
%%
clear d D
d(1, :) = derivcent(l_deblurring, 2*l_deblurring, 0, 0, false);
for n = 1: floor(N/2)
d(n+1, :) = alpha_estimated(n+1)/alpha_estimated(1)*...
derivcent(l_deblurring, P_cutoff, 0, 2*n, false);
end
D(:, channel) = sum(d, 1);
deblurring_kernel(:, channel) = sum(d(2: end, :), 1);
end