[1422d3]: / steps / step_C_varpcanet.m

Download this file

549 lines (402 with data), 24.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
function [] = step_C_varpcanet(dirTest, dirUtilities, ext, numCoresFeatExtr, numCoresKnn, fidLogs, logS, savefile, plotFigures)
%--------------------------------------
%General parameters
stepPrint = 100;
%PCA Params
run('./params/paramsPCATuning.m');
%--------------------------------------
%Dir DBs
dbname_All = { ...
'ALL_IDB'
};
dbname_part_All = { ...
'ALL_IDB2'
};
dbname_ROI_All = { ...
'ROI_256'
};
%nets
net_name{1} = 'AlexNet';
net_name{2} = 'VGG16';
net_name{3} = 'VGG19';
net_name{4} = 'ResNet18';
net_name{5} = 'ResNet50';
net_name{6} = 'ResNet101';
net_name{7} = 'DenseNet201';
%--------------------------------------
colorS_init = 1;
colorS_tune = 1;
colorS_test = 1;
%--------------------------------------
% processDummyDirs();
%--------------------------------------
%Loop on dbs
for db = 1 : numel(dbname_All)
% for db = 2
%Close
close all
pause(0.2);
%DB selection
dbname = dbname_All{db};
dbnamePart = dbname_part_All{db};
ROI = dbname_ROI_All{db};
dirDB_wROI = [dirTest dbname '/' dbnamePart '/' ROI '/'];
%dirDB_noROI = [dirWorkspace dbname '/' dbnamePart '/' ];
%--------------------------------------
%loop on nets
for n = 1 : numel(net_name)
%switch net
switch n
case 1
net = alexnet;
layer = 'fc6';
conv_layer = 'conv5';
case 2
net = vgg16;
layer = 'fc6';
conv_layer = 'conv5_3';
case 3
net = vgg19;
layer = 'fc6';
conv_layer = 'conv5_4';
case 4
net = resnet18;
layer = 'fc1000';
conv_layer = 'res5b_relu';
case 5
net = resnet50;
layer = 'fc1000';
conv_layer = 'res5c_branch2c';
case 6
net = resnet101;
layer = 'fc1000';
conv_layer = 'res5c_branch2c';
case 7
net = densenet201;
layer = 'fc1000';
conv_layer = 'conv5_block32_2_conv';
end %switch
%--------------------------------------
%Folder creation
%RESULTS: dirs net
dirResults = ['./Results/' dbname '/' dbnamePart '/' net_name{n} '/'];
mkdir_pers(dirResults, savefile);
%RESULTS: log file
timeStampRaw = datestr(datetime);
timeStamp = strrep(timeStampRaw, ':', '-');
if savefile && logS
logFile = [dirResults dbname '_log_' timeStamp '.txt'];
fidLog = fopen(logFile, 'w');
fidLogs{2} = fidLog;
end %if savefile && log
%--------------------------------------
%Display
fprintf_pers(fidLogs, '\n');
fprintf_pers(fidLogs, '---------------\n');
fprintf_pers(fidLogs, 'ALL-Unsharpen\n');
fprintf_pers(fidLogs, [dbname '\n']);
fprintf_pers(fidLogs, [dbnamePart '\n']);
fprintf_pers(fidLogs, '---------------\n');
fprintf_pers(fidLogs, '\n');
%--------------------------------------
%display
fprintf_pers(fidLogs, '---------------\n');
fprintf_pers(fidLogs, ['Net: ' net_name{n} '\n']);
fprintf_pers(fidLogs, '---------------\n');
fprintf_pers(fidLogs, '\n')
%--------------------------------------
%DB processing
%Extract samples
files = dir([dirDB_wROI '*.' ext]);
%Compute labels
[problem, labels, numImagesAll] = computeLabels(dirDB_wROI, files);
%--------------------------------------
%Display
fprintf_pers(fidLogs, 'Extracting samples...\n');
fprintf_pers(fidLogs, ['\t' num2str(numImagesAll) ' images in total\n']);
fprintf_pers(fidLogs, '\n');
%--------------------------------------
%LOOP ON ITERATIONS
%Init
accuracy_knnAll = zeros(param.numIterations, 1);
cmc = cell(param.numIterations, 1);
%--------------------------------------
%Compute random fold indexes
%if outside iteration loop, random fold once (es. 10-fold)
%[allIndexes, cvIndices] = computeAllIndexesFold(numImagesAll, labels, param);
%Loop
for r = 1 : param.numIterations
%--------------------------------------
%Display
fprintf_pers(fidLogs, ['Iteration N. ' num2str(r) '\n']);
%--------------------------------------
%File save info
fileSaveTest_iter = [dirResults '/results_iter_' num2str(r) '.mat'];
%--------------------------------------
%Compute random fold indexes
%--10-fold
%[indImagesTrain, indImagesTest, numImagesTrain, numImagesTest] = computeIndexesFold(cvIndices, r);
%--2-fold if inside iteration loop, random fold each iteration (repeated 2-fold)
[allIndexes, cvIndices] = computeAllIndexesFold(numImagesAll, labels, param);
[indImagesTrain, indImagesTest, numImagesTrain, numImagesTest] = computeIndexesFold(cvIndices, randi(2, 1));
%Corresponding labels
TrnLabels = labels(indImagesTrain);
TestLabels = labels(indImagesTest);
%--------------------------------------
%Display output number of images
fprintf_pers(fidLogs, ['\t' num2str(numImagesTrain) ' images are chosen for training\n']);
fprintf_pers(fidLogs, ['\t' num2str(numImagesTest) ' images are chosen for testing\n']);
%%%%%%%%%%%%%% TRAINING %%%%%%%%%%%%%
start_pool(numCoresFeatExtr);
%--------------------------------------
fprintf_pers(fidLogs, '\tTraining... \n')
%--------------------------------------
%Load images for training
fprintf_pers(fidLogs, '\t\tLoading images for training... \n')
[imagesCellTrain, filenameTrn, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTrain, numImagesTrain, param, colorS_init, 100, dirUtilities, 0);
imagesCellTrain = adjustFormat(imagesCellTrain);
%norm
%[imagesCellTrain, dd1, dd2] = computeNorm(imagesCellTrain);
%find th_focus
fprintf_pers(fidLogs, '\tComputing th_focus init... \n')
%%%%%% QUI %%%%%%
th_focus_init = find_th_focus(imagesCellTrain, TrnLabels, [128 128], dirUtilities, fidLogs);
%th_focus_init = 7.3;
%puliamo
clear imagesCellTrain
%tune
%th_focus_start = round((th_focus_init - th_focus_init*percC/100)*10)/10;
%th_focus_end = round((th_focus_init + th_focus_init*percC/100)*10)/10;
th_focus_start = round((th_focus_init - 0.5)*10)/10;
th_focus_end = round((th_focus_init + 0.5)*10)/10;
%th_focus_start = th_focus_init;
%th_focus_end = th_focus_init;
%init
accuracy_knnALLFOCUS = [];
%--------------------------------------
%tuning th_focus
fprintf_pers(fidLogs, '\tTuning th_focus... \n')
%loop on th_focus
allfocuses = th_focus_start : 0.1 : th_focus_end;
%%%%%% QUI %%%%%%
for th_focus = allfocuses
%for th_focus = th_focus_start
%Display
fprintf_pers(fidLogs, '\n')
fprintf_pers(fidLogs, ['\t\tth_focus: ' num2str(th_focus) '\n']);
fprintf_pers(fidLogs, '\t\tLoading images... \n')
[imagesCellTrain, filenameTrn, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTrain, numImagesTrain, param, colorS_tune, th_focus, dirUtilities, 0);
imagesCellTrain = adjustFormatForPCANet(imagesCellTrain, [128, 128]);
%--------------------------------------
%PCANet Training
%1 layer: PCA filters
[V, PCANet] = trainPCANet(imagesCellTrain, PCANet, fidLogs, param, numCoresFeatExtr);
%Feature extraction
fprintf_pers(fidLogs, '\t\tFeature extraction... \n')
[ftrain_all, numFeaturesTrain] = featExtrGaborAdapt(imagesCellTrain, V, PCANet, [], param, numImagesTrain, stepPrint);
%size
sizeTrain = size(ftrain_all, 2);
%--------------------------------------
%performance
fprintf_pers(fidLogs, '\t\tClassification - original... \n')
errorStruct_original_temp = computeClassificationPerformance(numFeaturesTrain, sizeTrain, ftrain_all, TrnLabels, stepPrint, numCoresKnn, fidLogs, param);
%compute cmc
[cmc_original_temp, cmc_sum_original_temp] = computeCMC(errorStruct_original_temp.distMatrixTest, TrnLabels, ['cmc original temp iteration ' num2str(r)], 0);
%Error metrics
fprintf_pers(fidLogs, ['\t\tTraining accuracy (perc. of correctly classified samples, at iteration n. ' num2str(r) '): %s%%\n'], num2str(errorStruct_original_temp.accuracy_knn*100));
fprintf_pers(fidLogs, ['\t\tAUC of CMC (at iteration n. ' num2str(r) '): %s\n'], num2str(cmc_sum_original_temp));
%assign
accuracy_knnALLFOCUS = [accuracy_knnALLFOCUS errorStruct_original_temp.accuracy_knn];
%accuracy_knnALLFOCUS = [accuracy_knnALLFOCUS cmc_sum_original_temp]; %maximize AUC of CMC
end %th_focus
%Puliamo
clear imagesCellTrain ftrain_all
%%%%%%%%%%%%%% APPLY BEST FOCUS %%%%%%%%%%%%%
fprintf_pers(fidLogs, '\n')
fprintf_pers(fidLogs, '\tApply best focus\n')
%best focusc
%[maxAcc, i_best_focus] = max(accuracy_knnALLFOCUS);
%i_best_focus = i_best_focus(1);
[sortA, isort] = sort(accuracy_knnALLFOCUS);
i_best_focus = isort(end); %highest th_focus that gives the best result
best_th_focus = allfocuses(i_best_focus);
fprintf_pers(fidLogs, ['\t\tBest focus: ' num2str(best_th_focus) ' \n']);
%training data
fprintf_pers(fidLogs, '\t\tLoading training images - original... \n')
[imagesCellTrain_original, ~, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTrain, numImagesTrain, param, colorS_test, 100, dirUtilities, 0);
imagesCellTrain_original = adjustFormat(imagesCellTrain_original);
%norm
%[imagesCellTrain_original, meanA_original, stdA_original] = computeNorm(imagesCellTrain_original);
fprintf_pers(fidLogs, '\t\tLoading training images - unsharpened... \n')
[imagesCellTrain_unsharp, ~, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTrain, numImagesTrain, param, colorS_test, best_th_focus, dirUtilities, 0);
imagesCellTrain_unsharp = adjustFormat(imagesCellTrain_unsharp);
%norm
%[imagesCellTrain_unsharp, meanA_unsharp, stdA_unsharp] = computeNorm(imagesCellTrain_unsharp);
%testing data
fprintf_pers(fidLogs, '\t\tLoading testing images - original... \n')
[imagesCellTest_original, ~, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTest, numImagesTest, param, colorS_test, 100, dirUtilities, 0);
[imagesCellTest_original, meanAll_test_original] = adjustFormat(imagesCellTest_original);
%imagesCellTest_original = applyNorm(imagesCellTest_original, meanA_original, stdA_original);
fprintf_pers(fidLogs, '\t\tLoading testing images - unsharpened... \n')
[imagesCellTest_unsharp, filenameTest, indexes_test_imUnsharpened] = loadImages(files, dirDB_wROI, allIndexes, indImagesTest, numImagesTest, param, colorS_test, best_th_focus, dirUtilities, 0);
[imagesCellTest_unsharp, meanAll_test_unsharp] = adjustFormat(imagesCellTest_unsharp);
%imagesCellTest_unsharpened = applyNorm(imagesCellTest_unsharpened, meanA_unsharp, stdA_unsharp);
%%%%%%%%%%%%%% TESTING - PRE-TRAINED CNNs %%%%%%%%%%%%%
%pre-trained
fprintf_pers(fidLogs, '\t\tPretrained CNNs... \n')
%Feature extraction - ORIGINAL
fprintf_pers(fidLogs, '\t\t\tFeature extraction - original... \n')
ftrain_all_original = feature_extraction_cnn(imagesCellTrain_original, net, layer, colorS_test);
ftest_all_original = feature_extraction_cnn(imagesCellTest_original, net, layer, colorS_test);
%Feature extraction - UNSHARP
fprintf_pers(fidLogs, '\t\t\tFeature extraction - unsharp... \n')
ftrain_all_unsharp = feature_extraction_cnn(imagesCellTrain_unsharp, net, layer, colorS_test);
ftest_all_unsharp = feature_extraction_cnn(imagesCellTest_unsharp, net, layer, colorS_test);
%size
numFeatures = size(ftest_all_unsharp, 1);
sizeTest = size(ftest_all_unsharp, 2);
%--------------------------------------
%Classification performance
%Original
%fprintf_pers(fidLogs, '\t\t\tClassification - original... \n')
%errorStruct_pretrained_original(r) = computeClassificationPerformance(numFeatures, sizeTest, ftest_all_original, TestLabels, stepPrint, numCoresKnn, fidLogs, param);
errorStruct_pretrained_original(r) = computeClassificationPerformanceTrainTest(numFeatures, sizeTest, ftrain_all_original, ftest_all_original, TrnLabels, TestLabels, stepPrint, numCoresKnn, fidLogs, param);
%Unsharp
%fprintf_pers(fidLogs, '\t\t\tClassification - unsharp... \n')
%errorStruct_pretrained_unsharp(r) = computeClassificationPerformance(numFeatures, sizeTest, ftest_all_unsharp, TestLabels, stepPrint, numCoresKnn, fidLogs, param);
errorStruct_pretrained_unsharp(r) = computeClassificationPerformanceTrainTest(numFeatures, sizeTest, ftrain_all_unsharp, ftest_all_unsharp, TrnLabels, TestLabels, stepPrint, numCoresKnn, fidLogs, param);
%puliamo
clear ftest_all_original ftest_all_unsharp
%compute cmc
[cmc1, cmc_sum1] = computeCMC_trainTest(errorStruct_pretrained_original(r).distMatrixTest, TestLabels, ['cmc original iteration ' num2str(r)], plotFigures);
[cmc2, cmc_sum2] = computeCMC_trainTest(errorStruct_pretrained_unsharp(r).distMatrixTest, TestLabels, ['cmc unsharp iteration ' num2str(r)], plotFigures);
cmc_original{r} = cmc1;
cmc_sum_original{r} = cmc_sum1;
cmc_unsharp{r} = cmc2;
cmc_sum_unsharp{r} = cmc_sum2;
errorStruct_pretrained_original(r).rank5 = cmc1(5);
errorStruct_pretrained_unsharp(r).rank5 = cmc2(5);
%Display
fprintf_pers(fidLogs, '\n')
fprintf_pers(fidLogs, ['\tPretrained - Accuracy original (at iteration n. ' num2str(r) '): %s%%\n'], num2str(errorStruct_pretrained_original(r).accuracy_knn*100));
fprintf_pers(fidLogs, ['\tPretrained - Accuracy unsharp (at iteration n. ' num2str(r) '): %s%%\n'], num2str(errorStruct_pretrained_unsharp(r).accuracy_knn*100));
fprintf_pers(fidLogs, ['\tPretrained - Rank 5 accuracy original (at iteration n. ' num2str(r) '): %s%%\n'], num2str(cmc1(5)*100));
fprintf_pers(fidLogs, ['\tPretrained - Rank 5 accuracy unsharp (at iteration n. ' num2str(r) '): %s%%\n'], num2str(cmc2(5)*100));
pause(0.1)
%%%%%%%%%%%%%% TESTING - FINE TUNING CNNs %%%%%%%%%%%%%
%pre-trained
fprintf_pers(fidLogs, '\n')
fprintf_pers(fidLogs, '\tFine tuning CNNs... \n')
%fprintf_pers(fidLogs, '\t\t\tTraining... \n')
pixelRange = [-30 30];
rotRange = [-180 180];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection', true, ...
'RandYReflection', true, ...
'RandRotation', rotRange);
%'RandXTranslation', pixelRange, ...
%'RandYTranslation', pixelRange ...
numClasses = numel(unique(labels));
inputSize = net.Layers(1).InputSize;
% layersTransfer = net.Layers(1:end-3);
% layers = [
% layersTransfer
% fullyConnectedLayer(numClasses, 'WeightLearnRateFactor', 20, 'BiasLearnRateFactor', 20)
% softmaxLayer
% classificationLayer];
%change last layers
lgraph = replaceLayers(net, numClasses);
%options
options = trainingOptions('sgdm', ...
'MiniBatchSize', 20, ... %128 20
'MaxEpochs', 100, ...
'InitialLearnRate', 1e-4, ...
'Shuffle', 'every-epoch', ... 'never'
'ValidationFrequency', 3, ...
'Verbose', false, ...
'Plots', 'none'); % 'training-progress'
fprintf_pers(fidLogs, '\t\tTraining original... \n')
%netTransfer_original = fineTuneCNN(imagesCellTrain_original, TrnLabels, './dummy_train_original/', inputSize, imageAugmenter, layers, options);
netTransfer_original = fineTuneCNN(imagesCellTrain_original, TrnLabels, './dummy_train_original/', inputSize, imageAugmenter, lgraph, options);
fprintf_pers(fidLogs, '\t\tTraining unsharp... \n')
%netTransfer_unsharp = fineTuneCNN(imagesCellTrain_unsharp, TrnLabels, './dummy_train_unsharp/', inputSize, imageAugmenter, layers, options);
netTransfer_unsharp = fineTuneCNN(imagesCellTrain_unsharp, TrnLabels, './dummy_train_unsharp/', inputSize, imageAugmenter, lgraph, options);
%
%fprintf_pers(fidLogs, '\t\t\tTesting... \n');
%cm
fprintf_pers(fidLogs, '\t\tTesting original... \n')
errorStruct_finetune_original(r) = computeClassPerformanceFineTuneCNN(imagesCellTest_original, TestLabels, './dummy_test_original/', inputSize, netTransfer_original, fidLogs);
fprintf_pers(fidLogs, '\t\tTesting unsharp... \n')
errorStruct_finetune_unsharp(r) = computeClassPerformanceFineTuneCNN(imagesCellTest_unsharp, TestLabels, './dummy_test_unsharp/', inputSize, netTransfer_unsharp, fidLogs);
%Display
fprintf_pers(fidLogs, ['\tFine tuning - Accuracy original (at iteration n. ' num2str(r) '): %s%%\n'], num2str(errorStruct_finetune_original(r).accuracy_knn*100));
fprintf_pers(fidLogs, ['\tFine tuning - Accuracy unsharp (at iteration n. ' num2str(r) '): %s%%\n'], num2str(errorStruct_finetune_unsharp(r).accuracy_knn*100));
%--------------------------------------
%Save
if savefile
save(fileSaveTest_iter, 'errorStruct_pretrained_original', 'errorStruct_pretrained_unsharp', 'errorStruct_finetune_original', 'errorStruct_finetune_unsharp', 'cmc_original', 'cmc_unsharp');
end %if savefile
%--------------------------------------
%Display progress
fprintf_pers(fidLogs, '\n');
%GRAD-CAM
fprintf_pers(fidLogs, 'Grad-CAM\n');
fprintf_pers(fidLogs, '\n');
dirGcam = [dirResults 'gcam_iter_' num2str(r) '/'];
mkdir_pers(dirGcam, savefile);
[imagesCellTest_original, ~, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTest, numImagesTest, param, colorS_test, 100, dirUtilities, 0);
[imagesCellTest_unsharp, ~, ~] = loadImages(files, dirDB_wROI, allIndexes, indImagesTest, numImagesTest, param, colorS_test, best_th_focus, dirUtilities, 0);
computeGradCam(imagesCellTest_original, imagesCellTest_unsharp, meanAll_test_original, meanAll_test_unsharp, indexes_test_imUnsharpened, ...
netTransfer_original, netTransfer_unsharp, conv_layer, inputSize, filenameTest, TestLabels, dirGcam);
%computeGradCam2(imagesCellTest_original, imagesCellTest_unsharp, meanAll_test_original, meanAll_test_unsharp, indexes_test_imUnsharpened, ...
%netTransfer_original, netTransfer_unsharp, conv_layer, inputSize, filenameTest, TestLabels, dirGcam);
%Puliamo
clear imagesCellTrain_original imagesCellTrain_unsharpenend imagesCellTest_original imagesCellTest_unsharpened netTransfer_original netTransfer_unsharp layers
end %for r = 1 : param.numIterations
close all
pause(0.1)
%display
fprintf_pers(fidLogs, '\n');
%--------------------------------------
%Average classification performance
%PRETRAINED
%Error metrics
fprintf_pers(fidLogs, '\n');
%original
fprintf_pers(fidLogs, 'Pretrained - Original\n')
stampaErrors(errorStruct_pretrained_original, fidLogs);
fprintf_pers(fidLogs, '\tRank 5 accuracy (mean; std): %s%%; %s%% \n', num2str(mean([errorStruct_pretrained_original.rank5])*100), num2str(std([errorStruct_pretrained_original.rank5])*100));
%unsharp
fprintf_pers(fidLogs, 'Pretrained - Unsharp\n')
stampaErrors(errorStruct_pretrained_unsharp, fidLogs);
fprintf_pers(fidLogs, '\tRank 5 accuracy (mean; std): %s%%; %s%% \n', num2str(mean([errorStruct_pretrained_unsharp.rank5])*100), num2str(std([errorStruct_pretrained_unsharp.rank5])*100));
%FINE TUNING
%Error metrics
fprintf_pers(fidLogs, '\n');
%original
fprintf_pers(fidLogs, 'Fine tuning - Original\n')
stampaErrors(errorStruct_finetune_original, fidLogs);
%unsharp
fprintf_pers(fidLogs, 'Fine tuning - Unsharp\n')
stampaErrors(errorStruct_finetune_unsharp, fidLogs);
%--------------------------------------
%Average CMC
%original
stampaAvgCMC(cmc_original, 'original', dirResults, savefile, plotFigures);
%unsharp
stampaAvgCMC(cmc_unsharp, 'unsharp', dirResults, savefile, plotFigures);
%--------------------------------------
%Display progress
fprintf_pers(fidLogs, '\n');
%--------------------------------------
%Close file log
if savefile && logS
fclose(fidLog);
end %if savefile && log
% delete(gcp('nocreate'));
fclose('all');
%close
close all
pause(0.1)
end %for n
end %for db