|
a |
|
b/libraries/lib_FastCMeans/FastFCMeans.m |
|
|
1 |
function [C, U, LUT, H] = FastFCMeans(im, c, q, opt) |
|
|
2 |
% Partition N-dimensional grayscale image into c classes using a memory |
|
|
3 |
% efficient implementation of the fuzzy c-means (FCM) clustering algorithm. |
|
|
4 |
% Computational efficiency is achieved by using the histogram of image |
|
|
5 |
% intensities during clustering instead of the raw image data. |
|
|
6 |
% |
|
|
7 |
% INPUT: |
|
|
8 |
% - im : N-dimensional grayscale image in integer format. |
|
|
9 |
% - c : positive integer greater than 1 specifying the number of |
|
|
10 |
% clusters. c=2 is the default setting. Alternatively, c can be |
|
|
11 |
% specified as a k-by-1 array of initial cluster (aka prototype) |
|
|
12 |
% centroids. |
|
|
13 |
% - q : fuzzy weighting exponent. q must be a real number greater than |
|
|
14 |
% 1.1. q=2 is the default setting. Increasing q leads to an |
|
|
15 |
% increased amount of fuzzification, while reducing q leads to |
|
|
16 |
% crispier class memberships. Note that while in principle |
|
|
17 |
% setting q==1 is equivalent to using a classical c-means |
|
|
18 |
% algorithm, this setting cannot be used in practice because it |
|
|
19 |
% produces an infinite exponent in the membership update formula. |
|
|
20 |
% - opt : optional logical argument used to indicate how to initialize |
|
|
21 |
% cluster centroids. If opt=true {default} then centroids are |
|
|
22 |
% initialized are by sampling the intensity range at uniform |
|
|
23 |
% intervals. If opt=false then the initial centroids are set |
|
|
24 |
% using the c-means algorithm. |
|
|
25 |
% |
|
|
26 |
% OUTPUT : |
|
|
27 |
% - C : 1-by-k array of cluster centroids. |
|
|
28 |
% - U : L-by-k array of fuzzy class memberships, where k is the number |
|
|
29 |
% of classes and L is the intensity range of the input image, |
|
|
30 |
% such that L=numel(min(im(:)):max(im(:))). |
|
|
31 |
% - LUT : L-by-1 array that specifies the intensity-class relations, |
|
|
32 |
% where L is the dynamic intensity range of the input image. |
|
|
33 |
% Specifically, LUT(1) corresponds to the (class) label assigned to |
|
|
34 |
% min(im(:)) and LUT(L) corresponds to the label assigned |
|
|
35 |
% to max(im(:)). LUT is used as input to 'apply_LUT' function to |
|
|
36 |
% create a label image. |
|
|
37 |
% - H : image histogram. If I=min(im(:)):max(im(:)) are the intensities |
|
|
38 |
% present in the input image, then H(i) is the number of |
|
|
39 |
% pixels/voxels with intensity I(i). |
|
|
40 |
% |
|
|
41 |
% AUTHOR : Anton Semechko (a.semechko@gmail.com) |
|
|
42 |
% |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
% Default input arguments |
|
|
46 |
if nargin<2 || isempty(c), c=2; end |
|
|
47 |
if nargin<3 || isempty(q), q=2; end |
|
|
48 |
if nargin<4 || isempty(opt), opt=true; end |
|
|
49 |
|
|
|
50 |
% Basic error checking |
|
|
51 |
if nargin<1 || isempty(im) |
|
|
52 |
error('Insufficient number of input arguments') |
|
|
53 |
end |
|
|
54 |
msg='Revise variable used to specify class centroids. See function documentation for more info.'; |
|
|
55 |
if ~isnumeric(c) || ~isvector(c) |
|
|
56 |
error(msg) |
|
|
57 |
end |
|
|
58 |
if numel(c)==1 && (~isnumeric(c) || round(c)~=c || c<2) |
|
|
59 |
error(msg) |
|
|
60 |
end |
|
|
61 |
if ~isnumeric(q) || numel(q)~=1 || q<1.1 |
|
|
62 |
error('3rd input argument (q) must be a real number > 1.1') |
|
|
63 |
end |
|
|
64 |
if ~islogical(opt) || numel(opt)>1 |
|
|
65 |
error('4th input argument (opt) must a Boolean') |
|
|
66 |
end |
|
|
67 |
|
|
|
68 |
% Check image format |
|
|
69 |
if isempty(strfind(class(im),'int')) |
|
|
70 |
error('Input image must be specified in integer format (e.g. uint8, int16)') |
|
|
71 |
end |
|
|
72 |
|
|
|
73 |
% Intensity range |
|
|
74 |
Imin=double(min(im(:))); |
|
|
75 |
Imax=double(max(im(:))); |
|
|
76 |
I=(Imin:Imax)'; |
|
|
77 |
|
|
|
78 |
% Initialize cluster centroids |
|
|
79 |
if numel(c)>1 % user-defined centroids |
|
|
80 |
C=c; |
|
|
81 |
opt=true; |
|
|
82 |
else % automatic initialization |
|
|
83 |
if opt |
|
|
84 |
dI=(Imax-Imin)/c; |
|
|
85 |
C=Imin+dI/2:dI:Imax; |
|
|
86 |
else |
|
|
87 |
[C,~,H]=FastCMeans(im,c); |
|
|
88 |
end |
|
|
89 |
end |
|
|
90 |
|
|
|
91 |
% Compute intensity histogram |
|
|
92 |
if opt |
|
|
93 |
H=hist(double(im(:)),I); |
|
|
94 |
H=H(:); |
|
|
95 |
end |
|
|
96 |
clear im |
|
|
97 |
|
|
|
98 |
% Update fuzzy memberships and cluster centroids |
|
|
99 |
dC=Inf; |
|
|
100 |
while dC>1E-3 |
|
|
101 |
|
|
|
102 |
C0=C; |
|
|
103 |
|
|
|
104 |
% Distance to the centroids |
|
|
105 |
D=abs(bsxfun(@minus,I,C)); |
|
|
106 |
D=D.^(2/(q-1))+eps; |
|
|
107 |
|
|
|
108 |
% Compute fuzzy memberships |
|
|
109 |
U=bsxfun(@times,D,sum(1./D,2)); |
|
|
110 |
U=1./(U+eps); |
|
|
111 |
|
|
|
112 |
% Update the centroids |
|
|
113 |
UH=bsxfun(@times,U.^q,H); |
|
|
114 |
C=sum(bsxfun(@times,UH,I),1)./sum(UH,1); |
|
|
115 |
C=sort(C,'ascend'); % enforce natural order |
|
|
116 |
|
|
|
117 |
% Change in centroids |
|
|
118 |
dC=max(abs(C-C0)); |
|
|
119 |
|
|
|
120 |
end |
|
|
121 |
|
|
|
122 |
% Defuzzify |
|
|
123 |
[~,LUT]=max(U,[],2); |
|
|
124 |
|