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Abstract— A generalized framework for numerical differ-
entiation (ND) is proposed for constructing a finite impulse
response (FIR) filter in closed form. The framework regulates the
frequency response of ND filters for arbitrary derivative-order
and cutoff frequency selected parameters relying on interpolat-
ing power polynomials and maximally flat design techniques.
Compared with the state-of-the-art solutions, such as Gaussian
kernels, the proposed ND filter is sharply localized in the
Fourier domain with ripple-free artifacts. Here, we construct
2D MaxFlat kernels for image directional differentiation to
calculate image differentials for arbitrary derivative order, cutoff
level and steering angle. The resulted kernel library renders
a new solution capable of delivering discrete approximation
of gradients, Hessian, and higher-order tensors in numerous
applications. We tested the utility of this library on three different
imaging applications with main focus on the unsharp masking.
The reported results highlight the high efficiency of the 2D
MaxFlat kernel and its versatility with respect to robustness and
parameter control accuracy.

Index Terms— MaxFlat design, low pass/full band FIR filter,
high order derivatives, directional differentiation, image interpo-
lation, Canny edge detection, image sharpening.

I. INTRODUCTION

DERIVATIVE approximation is the hardcore problem of
variety of image processing tasks. It has been utilized

by various orders applied in the context of many problems
including but not limited to enhancement/sharpening [1]–[3],
edge detection [4], [5], curvature estimation [6], [7], local
descriptors [8]–[11], and many more. The Gaussian kernels are
used in a great extent for numerical implementation of such
applications due to (a) simple analytical formulation of the
finite impulse response (FIR) filter, (b) adaptation in different
scale-space operation, and (c) similarities to the human visual
system [8]. Despite its popularity, the Gaussian is mainly
suitable to encode smooth-textures, but not but fine-texture
images. Regardless of different scales, it is mostly accurate
on low-frequency transforms and attenuates the majority of
frequency spectrum that are not necessarily the representatives
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of noise/aliasing artifact. In fact, when it comes to the task of
numerical differentiation, we face the dilemma of eliminating
such contaminant artifacts or increasing the numerical accu-
racy of high frequency information. This dilemma fits in the
context of “lowpass differentiation” to balance out these two
alternatives.

In this paper, we study the problem of designing lowpass
FIR differentiation that is of broad interest in signal and
image processing. The key concept behind designing such a
framework is to regulate derivative response (in the Fourier
domain) to balance out three main principles: (a) set a custom
range of solutions for wide cutoff frequencies 0 ≤ ωc ≤ π ,
(b) maintain sharp roll-off factor by minimizing the transition
band, and (c) observe free-residual artifact on the stop-band.
The union of these three in one framework is pretty unique
that makes the design very attractive by increasing the approx-
imation accuracy on the pass-band, and at the same time,
minimizing the impact of noise and perturbing artifacts on the
stop-band. This is critical for accurate estimation of features in
visual contents that are comprised of fine-textures and hence a
careful treatment is required. In addition, we study the problem
of designing two–dimensional (2D) kernels for directional
image differentiation. Particular cases of such analysis emerge
in directional-gradient (first order) or tensor-based approaches
(including second order) to analyze directional structures in
images. Recent advances reveal the direct applications in
edge/feature detection [12], [13], pattern analysis [14], [15],
and image enhancement [16].

A. Previous Works

The early work on lowpass differentiation goes back to
the least-square approach by Lanczos [17], [18] which trun-
cates high frequency harmonies in the Fourier domain while
minimizing the energy of Gibbs oscillations. The method has
been generalized later in [19]–[22]. Savitzky-Golay [23]–[26]
are the successors of such design that have been applied
in many engineering problems. The design is based on the
power polynomials that fits the solution of FIR filter coeffi-
cients in a Vandermonde system of equations. The design is
highly flexible in terms of varying derivative orders and cut-
off frequency parametrization. However, the design contains
side-lobe artifacts on the stop-band and cause hallucinated
lines on the image edges that is closely tied with human
visual perception error. A better noise treatment has been
made by Kaiser [27], [28] using sinc interpolation or by Jacobi
polynomials in [29]. Both methods, however, are limited by
cutoff range designs and derivative orders. High derivative
orders are also studied by Simoncelli et al [30]–[32] using
sinc interpolations, or by cubic interpolating polynomials
in [33]–[35]. Gaussian based kernels are also comprehensively
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studied in many scale-space operations in [8], [9], [36]–[41].
A common disadvantage to all of them is they provide limited
cutoff range solutions manifested by slow-decay response,
causing perturbing artifacts on the stop-band.

Perhaps, a more sophisticated approach of lowpass differen-
tiation can be addressed by Selesnick et al [42]–[45] designed
by MaxFlat technique which provides wide cutoff range with
free-residual artifacts on the stop-band. The solution method,
however, is limited to only zero (interpolating filter) and first
order differentiation. The core idea was first introduced by
Herrmann in his 1970 paper [46] to design a linear-phase
lowpass FIR filter (type-I) according to the maximally flat
sense such that (a) the filter traces the ideal trajectory up
to a certain cutoff level, and (b) stop-band is suppressed
by flattening the response tangent to zero to yield lowpass
filter with ripple-free residuals. The closed form solution
is accommodated by Hermite interpolating polynomials [46]
and generalized in the following work by Daubechies [47],
Selesnick [42]–[44], Cooklev [48], [49], Samadi [50], and
Pei [51]. The capability of vanishing “undesired” frequencies
in a flexible cutoff range with sharp localized responses is
indeed a viable asset for image analysis. Contourlet transforms
are of such examples that utilize MaxFlats for multi-scale
analysis [52].

B. Shortcomings and Contributions

Despite vigorous research efforts, it comes as a surprise
to note that the construction of lowpass FIR derivative filters
within the MaxFlat framework is limited only up to first order
differentiation [45]. To the best of our knowledge, there is
no formulation of second and higher orders in the literature
that can, similar to first order in [45], set a custom range of
cutoff frequency with sharp decay and ripple-free residuals.
This is mainly because the derivation of closed form solutions
for higher order is not a feasible task by means of the methods
such as power series expansions in [45]. The difficulty lies in
solving a non-homogeneous high order nonlinear differential
equations which is almost impractical.

In this paper we take a different approach to complement
this design by incorporating the method of undetermined
coefficients as a stencil model into the MaxFlat framework.
Accommodated by the Fourier transform and Taylor series
expansion, we transform the associated variables and we
establish a direct link between the interpolating polynomials
and filter response to propose a generalized framework. The
contributions of this work are in three folds:

• We find a comprehensive list of solutions in a
matrix-vector linear system of equation for arbitrary
derivative orders with customized lowpass/fullband filter
design. We offer the exact solution by using symbolic
calculations in MATLAB for computer programming.

• We employed the proposed MaxFlat filters in two dimen-
sional (2D) directional differentiation kernel designs
that can be tuned for arbitrary derivative orders, cutoff
frequencies, and rotating (steering) direction. These 2D
MaxFlat kernels offer superior performance compared
to that of steerable gradient design using Gaussian fil-
ters [12], [37] applied to image feature extraction.

Fig. 1. Equidistant mesh grids and staggered nodes by a halfway sample
shift (h/2).

• We studied the utility of the 2D MaxFlat kernels in three
different applications of image interpolation, Canny edge
detection and unsharp masking as variants of different
derivative orders. The numerical evaluations of the pro-
posed solutions outperform the state-of-the-art results.

The remainder of this paper is structured as follows.
We formulate the problem of lowpass FIR differentiation in
a generalized framework in Section II. The utility of the
proposed framework is studied in Section III. The calculated
filters are employed in directional differentiation in Section IV,
whereas the applications are reported in Section V. Concluding
remarks are discussed in Section VI.

II. PROPOSED NUMERICAL FRAMEWORK

The numerical difference models constraint by undeter-
mined coefficients has been studied abundantly to derive
set of solutions to fullband FIR differentiation by means
of Taylor or Lagrangian expanding series [53]–[61]. In this
section, we incorporate this model to transfer the variables
into Fourier domain and regulate the filter response by means
of maximally-flat criterion. The proposed approach not only
benefits from including arbitrary differential orders, but also
integrates a parameter control to manipulate various cutoff
levels.

A. Undetermined Coefficients

Let � = [a, b] and f be a function f (x) : � �→ R,
and assume that f is continuous from first to nth derivatives
i.e. f (x) ∈ Cn , with n being as large as necessary. The
function values, which are also known as nodal values, are
prescribed around a node X j with equidistant grids (uniform
sampling) i.e. X j±k = X j ± �kh, where k ∈ {1, . . . , L}
and �k is defined either at exact nodes �k = k or staggered
position �k = k − 1

2 known as half-sample delay [62].
Figure 1 demonstrates the lattice nodes with h being the
sampling interval for discretization known as the sampling
rate.

The odd and even interpolants are defined by

p j,k
o � f j+�k − f j−�k

2
=

∞∑

n=0

(�kh)2n+1

(2n + 1)! f (2n+1)
j , (1a)

p j,k
e � f j+�k + f j−�k

2
− 1 =

∞∑

n=1

(�kh)2n

(2n)! f (2n)
j . (1b)

where f j = f (x)
∣∣∣
x=X j

. Furthermore, the right hand sides of

equations (1a)-(1b) are obtained by Taylor series expansion.
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Accordingly, the odd and even derivatives are synthesized by
means of linear interpolation

f (2m+1)
j =

L∑

k=1

ck p j,k
o , m ∈ {0, 1, . . .} (2a)

f (2m)
j =

L∑

k=1

ck p j,k
e , m ∈ {1, . . .}. (2b)

where ck is the coefficient to be determined.

B. Frequency Regulation: Rise of
Maximally-Flat Sense

We can obtain corresponding transfer functions (filter
response) of (2a)-(2b) by discrete Fourier transform (DFT)

H 2m+1(ω) �
F {

f (2m+1)
}

F {
f j

} = i
L∑

k=1

ck sin �khω (3a)

H 2m(ω) �
F {

f (2m)
}

F {
f j

} =
L∑

k=1

ck(cos �khω − 1). (3b)

With two possibilities of centralized/staggered nodes for �k ,
we can construct four different cases similar to the generalized
cases in [48]. In particular, we are only interested in (a) �k =
k − 1/2 for odd (anti-symmetric), and (b) �k = k for even
(symmetric) order of differentiations. This is to avoid deviation
of high-frequencies when high cutoff is needed.

Associated with the transfer functions in (3a)-(3b),
we impose the following constraints to approximate the
ideal-lowpass FIR differentiators in the maximally-flat sense

d p H n(ω)

dωp

∣∣∣
ω=0

= d p H n
c (ω)

dωp

∣∣∣
ω=0

, p ∈ {0, . . . , P} (4a)

dq H n(ω)

dωq

∣∣∣
ω=π

= 0, q ∈ {0, . . . , Q}. (4b)

where P and Q are the free parameters controlling the

tangent power at low and high frequencies, respectively.
H n

c (ω) in (4a) refers to the continuous Fourier transform of
the ideal nth order derivative function defined by H n

c (ω) =
f̂ (n)(ω)/ f (ω) = (iω)n . Substituting the odd form of this
transfer function yields H 2m+1

c (ω) = i(−1)mω2m+1 which
is purely imaginary. Similarly, the substitution for even form
yields H 2m

c (ω) = (−1)mω2m which is purely real.
Before applying the MaxFlat constraints in (4a)-(4b) on the

transfer functions (3a)-(3b), we decompose the sinusoid terms
by means of Taylor-Maclaurin series expansion at particular
frequency point ω0 by

sin (�k(ω − ω0)) =
∞∑

n=0

(−1)n

(2n + 1)! (�k(ω − ω0))
2n+1

cos (�k(ω − ω0)) =
∞∑

n=0

(−1)n

(2n)! (�k(ω − ω0))
2n .

Calculating the pth derivative of the above expansions
results in

d p

dωp {sin (�k(ω − ω0))} =
∞∑

n=0

(−1)n�2n+1
k

(2n + 1 − p)! (ω − ω0)
2n+1−p

=
{

(−1)n�2n+1
k , p = 2n + 1

0, else
(6)

and

d p

dωp {cos (�k(ω − ω0))} =
∞∑

n=0

(−1)n�2n
k

(2n − p)!(ω − ω0)
2n−p

=
{

(−1)n�2n
k , p = 2n

0, else.
(7)

Now by substituting (3a) in MaxFlat constraints (4a)-(4b)
and accommodating the sinusoid terms using the trigonometric
expansion in (6), we derive the following system of linear
equations for odd numerical differentiation

L∑

k=1

�
2p+1
k ck =

{
0, p ∈ {0, 1, . . . , � P−1

2 �}\{m}
(2m + 1)!, p = m

(8a)
L∑

k=1

(−1)k�
2q
k ck = 0, q ∈ {0, 1, . . . , � Q

2
�} (8b)

The linear sets of equations (8a)-(8b) are the translation of
MaxFlat criterion to hold the tangency of low and high
frequency responses at ω = {0, π}. The uniqueness of the
solution in (8a)-(8b) is satisfied if � P−1

2 � + � Q
2 � + 2 = L.

Finally, associated by the trigonometric expansion in (7), the
corresponding system of linear equations for even numerical
differentiation are obtained by substituting (3b) in (4a)-(4b)
and yield

L∑

k=1

�
2p
k ck =

{
0, p ∈ {1, . . . , � P

2 �} \ {m}
(2m)!, p = m

(9a)
L∑

k=1

(
(−1)k − 1

)
ck = 0, (9b)

L∑

k=1

(−1)k�
2q
k ck = 0, q ∈ {1, . . . , � Q

2
�}. (9c)

where, the uniqueness of the solution in (9b)-(9c) is satisfied
if � P

2 � + � Q
2 � + 1 = L. In both odd and even design cases,

different combination of P and Q controls the cutoff range of
the lowpass FIR filter.

C. Matrix-Vector Formulation

We can construct the matrix-vector formulation analogues
to the system of linear equations in (8a)-(8b) and (9a-9c) by

[
M� P−1

2 � · L

M� Q
2 � · S

]
co,m = bm

o (10a)

⎡

⎢⎢⎣

M� P
2 �−1 · L2

diag S − 1

M� Q
2 �−1 · L2 · S

⎤

⎥⎥⎦ ce,m = bm
e , (10b)

where,

Mn =

⎡

⎢⎢⎢⎣

1 1 . . . 1
�2

1 �2
2 . . . �2

L
...

...
. . .

...

�2n
1 �2n

2 . . . �2n
L

⎤

⎥⎥⎥⎦,
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TABLE I

LOWPASS FIR DERIVATIVE RESPONSES OF ZERO, FIRST, SECOND,
THIRD, AND FOURTH ORDERS BY MEANS OF FOUR DIFFERENT

METHOD DESIGNS OF GAUSSIAN, SIMONCELLI [30]–[32],
SAVITZKY-GOLAY [23]–[26], AND PROPOSED MAXFLAT

FILTERS. TRANSITION OF COLOR SHADES FROM DARK
TO BRIGHT ARE ACHIEVED BY TWEAKING THEIR

CORRESPONDING TUNING PARAMETERS TO

MANIPULATE DIFFERENT RANGE OF CUTOFF
FREQUENCIES. THE BALANCED CUTOFF

RANGE SOLUTIONS, SHARP ROLL-OFF

FACTOR, AND FREE-RESIDUAL

ARTIFACTS ON THE STOP-BAND
IN MAXFLAT ARE HIGHLY

EVIDENT COMPARED TO

OTHER METHODS

S = diag
(
(−1)i

)
and L = diag (�i ) are squared diagonal

matrices of size L. Both bm
o = [0, . . . , (2m + 1)!, . . . , 0]T

and bm
e = [0, . . . , (2m)!, . . . , 0]T contains one non-zero entry

at (m + 1)th row. The systems of equations in (10a)-(10b)
include FIR coefficient design for different (a) order of differ-
entiation defined by m, (b) filter tap-length defined by L, and
(c) cutoff frequency controlled by combinations of P and Q.
Accordingly, the odd order of differentiation is constructed by
even length (N = 2L)/anti-symmetric structure (case-IV)

d2m+1 = [
co,m,−co,m

]T
, (11)

where, the vector coefficient co,m is determined by (10a). Note
that dm

o estimates the derivatives at staggered nodes, and,
therefore, it can be implemented either in backward [dm

o , 0]
or forward [0, dm

o ] schemes, causing h/2-shift back or ahead,
respectively. Similarly, the FIR coefficients of even derivatives

TABLE II

FILTER QUALITY RESPONSES OF ZERO, FIRST, SECOND, THIRD, AND
FOURTH ORDER LOWPASS FIR DERIVATIVES INTRODUCED IN TABLE I

are constructed by odd length (N = 2L + 1)/symmetric
form (case-I)

d2m =
[

ce,m,−2
L∑

k=1

ce,m(k), co,m

]T

, (12)

where the vector coefficient ce,m is defined by (10b).

D. Exact Solution by Symbolic Calculation

The structure of matrices in (10a)-(10b) is a partitioned
block Vandermonde matrix that are highly ill-conditioned
(numerically unstable). Nevertheless, Vandermonde matri-
ces in general are non singular and a closed form solu-
tion exists [63]. We solve this partitioned systems using
MATLAB’ symbolic toolbox with reasonable tap-length size
L ≤ 50 in ordinary desktop machines, which is prac-
tically feasible to provide reasonable cutoff resolutions.
Table I demonstrates variants of lowpass FIR derivative filters
using our proposed MaxFlat filters. Furthermore, we select
three other filters from the literature, namely Gaussian,
Simoncelli [30]–[32], and Savtizky-Golay filters [23]–[26] to
compare their performances. The cutoff level for the Gaussian
kernels is tuned by the variance parameter (σ ). Simoncelli’s
filters do not contain any tuning parameter but its correspond-
ing cutoff can be manipulated by the filter tap-length. The
Savitzky-Golay on the other hand, directly controls the cutoff
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TABLE III

PERFORMANCE ANALYSIS OF LOWPASS DERIVATIVE FIR FILTERS BY MEANS OF FOUR DIFFERENT METHODS OF GAUSSIAN, SIMONCELLI,
SAVTIZKY-GOLAY, AND MAXFLAT (PROPOSED). FIRST TO THIRD COLUMNS OF THIS TABLE SHOW THE CUTOFF RANGE SOLUTION INCLUDING

THE TRANSITION BAND AS PER FUNCTIONS OF TUNING PARAMETERS FOR ZERO, FIRST, AND SECOND ORDER DIFFERENTIATION. THE

FOURTH TO SIXTH COLUMNS DEMONSTRATE THE SPECTRAL POWER DENSITY CONSUMPTION OF PASS-BAND COMPARED TO

THEIR STOP-BAND ON THE SAME DERIVATIVE ORDERS. MAXFLAT FILTERS PROVIDE A BALANCED DESIGN OF WIDE
CUTOFF FREQUENCY, MINIMAL TRANSITION BAND, AND MINIMAL ENERGY CONSUMPTION ON THE

STOP-BAND COMPARED TO ALL THREE COUNTERPART SOLUTIONS

level by the polynomial degree, similar to the tuning parame-
ter P used in MaxFlat design. The Gaussian mainly suffers
from wide transition band on the high cutoff frequencies.
Simoncelli provides limited cutoff range and Savitzky-Golay
contains side-lobe artifacts on the stop-band. In contrast to all
three, the MaxFlat filters solve these issues in a more balanced
way.

To better realize this improvement, the filter qualities are
also demonstrated in Table II that are obtained by the rel-
ative ratio of the discrete response to the continuous case
|Hn (ω)|
|(iω)n | . Here, an appropriate lowpass filter is referred to

the one that either preserves a designated frequency (qual-
ity equals to one) or eliminates it (quality equals to zero)
with sharp roll-off factor. The relative comparison among
all filters implies that the proposed MaxFlat framework is a
suitable candidate for accurate tuning of wider range of cutoff
frequencies.

III. ON THE UTILITY OF MAXFLAT FILTERS

To evaluate the theoretical performance of the proposed
MaxFlat filters compared to three aforementioned filters,
we conduct a numerical evaluation by quantifying the prin-
ciples (a)-(c) defined in the introduction. The pass-band of
an FIR filter here is referred to the frequency range bounded

by the cutoff level 0 ≤ ωpass ≤ ωc which is found by
the halfway (3dB) attenuation of the filter quality response
i.e. |H n(ω)|/| jω|n similar to the definition used in [42]–[45].
Furthermore, the transition band is determined between the
10% and 90% falling amplitude frequencies ωa ≤ ωtrans ≤ ωb.
The stop-band frequency is also defined beyond the 90%
falling amplitude frequency ωb ≤ ωstop ≤ π .

First we validate the maximum cutoff range achieved from
every individual method by varying their parameters i.e. σ for
Gaussian, l for Simoncelli, and P for both Savtizky-Golay
and proposed MaxFlat. The tap-length here is L = 15.
Table III, (first to third columns) demonstrate the cutoff
frequency and transition band (overlaid on top of each other)
achieved as functions of tuning parameters for zero, first
and second order differentiations. While both Savtizky-Golay
and MaxFlat filters provide wide cutoff ranges compared to
Gaussian and Simoncelli, the transition band obtained by
MaxFlat remains minimal compared to all three. Though
Savitzky-Golay provide sharper roll-off on transition band
compared to MaxFlat, the existing side-lob artifacts contribute
to longer transition period and hence falls behind the MaxFlat.
Examples of the filter responses of all four methods are also
shown in Table IV for two different cutoff frequencies. The
artifacts on both transition-band and stop-band observed for
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TABLE IV

DESIGN OF ZERO, FIRST, AND SECOND ORDER DERIVATIVE LOWPASS FIR FILTERS BY MEANS OF FOUR DIFFERENT METHODS OF GAUSSIAN,
SIMONCELLI, SAVTIZKY-GOLAY, AND MAXFLAT (PROPOSED). TWO CUTOFF FREQUENCIES ωc = {0.28π, 0.43π} (RAD) ARE SET TO

DEMONSTRATE THE FILTERS VARIABILITY WITH RESPECT TO DIFFERENT CUTOFFS, ROLL-OFF BEHAVIOR, AND

STOP-BAND ARTIFACTS. THE SHARP ROLL-OFF AND FREE RESIDUAL ARTIFACTS OF MAXFLAT

APPROACH IS HIGHLY EVIDENT COMPARED TO THREE COUNTERPART SOLUTIONS

MaxFlat are very minimal compared to other three methods.
This is shown by logarithmic-scale of the filter responses in
the same table.

The key-roll of deploying a suitable lowpass derivative filter
in practice is to make sure the perturbed artifacts introduced in
stop-band has minimal effect on approximating the underlying
signal/image features. To investigate this, the power spec-
tral densities on both pass-band and stop-band of all filters
are calculated. The relative comparison between these two
energies provides a meaningful insight on the deviation of
filter response with respect to its perturbed artifacts. In other
words, calculating the leftover energy on the stop-band is a
way to measure how bad the filter transformation impacts the
approximation accuracy. The corresponding spectral powers
are shown in Table III (fourth to sixth columns) for all four
different methods. By increasing the differentiation order, the
gap between pass-band and stop-band energies decreases and
they become closer. This is expected since high order differen-
tiations are more sensitive to higher frequencies as a magnitude
of ωn than lower frequencies. The relative comparison between
four methods shows that the MaxFlat filters provide more
efficient truncation of the stop-band energy with respect to
different cutoffs. While Gaussian filters perform better on the
lower cutoffs, by increasing its cutoff frequency, the concen-
trated energy on the stop-band reaches beyond the pass-band
and becomes useless. Simoncelli filters perform similar to

the Gaussian, but with narrower cutoff range solutions.
Savitzky-Golay filters on the other hand provide more robust
design with respect to cutoff parameter, where the energy on
the stop-band remains lower than the pass-band. This is more
evident on low order derivatives. However, the gap energies
are smaller than Gaussian and Simoncelli due to perturbed
side-lobes on the stop-band. As a conclusion, MaxFlat filters
provide more efficient designs where the rank observation
of the pass-band energy is very consistent with respect to
different cutoff parameters and derivative orders.

IV. IMAGE DIRECTIONAL DIFFERENTIATION

In this section we design 2D kernels to calculate
high-order directional derivatives on the images. The tech-
nique of directional differentiation has been pioneered
by Freeman–Adelson [37] to design steerable filters enclosed
with Gaussian kernels. Examples of such kernels are provided
in the supplementary materials. Our focus here is to generalize
the 2D–directional differentiators by means of MaxFlat kernels
proposed in previous section to obtain 2D convolution kernels
that contain flexible cutoff range and sharp frequency localized
responses for image analysis.

A. High-Order Directional Differentiation

Given a surface image f (x, y) ∈ R
m×n , the goal is to

approximate the nth–order directional derivative of the surface
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TABLE V

2D MAXFLAT CONVOLUTION KERNELS K2D(n, θ, Px , Py) FOR ARBITRARY ORDER OF DIFFERENTIATION n,
STEERING DIRECTION θ , AND CUTOFF FREQUENCY CONTROLLED BY FLATNESS DEGREE P . SELECTED

PARAMETERS HERE ARE L = 25 AND Px = Py = 12 ( ωc
π ≈ 0.3) FOR ALL FILTERS

denoted by Dn

u f (x, y) along a unit vector 
u = (

ux , uy
)
. The

first-order directional derivative is defined by projecting the
gradient vector ∇ f on 
u i.e. D
u f = 
u · ∇ f . The linear
operator D
u can be applied once again to obtain second-order
direction i.e. D2


u f = D
u (
u · ∇ f ) = 
u · ∇ (
u · ∇ f ). Since
the gradient of a constant vector is zero ∇
u = 0, then
D2


u f = 
u · (
u · ∇2 f
)
. Using the same recursive approach, the

nth–order directional differentiation is obtained by Dn

u f =


u · (
u · (· · · (
u · ∇n f ))). Here, the term ∇n f consists of
(n + 1)-order tensor and by induction of polynomial expansion
it can be simplified in the form of linear combination of partial
derivatives of order n

Dn

u f =

n∑

k=0

(
n

k

)
un−k

x uk
y

∂n f

∂xn−k∂yk . (13)

The partial derivatives ∂n f
∂xn−k∂yk in (13) with impulse

response f (x, y) = δ(x, y) construct 2D-basis kernels that
can be separated in two axes x and y independently such
∂n−k

∂xn−k

(
∂kδ
∂yk

)
. One possible approach for discrete approxi-

mation of these kernels is to accommodate each partial
differentiator, either in x or y, by means of the MaxFlat
lowpass derivative filters proposed in previous section.
Hence, the corresponding 2D–basis can be approximated by

∂nδ
∂xn−k∂yk ≈ dT

k dn−k , where dn is defined in (11) and (12) for

odd and even differentiators, respectively. Note that n = 0
corresponds to only lowpass filter. Assuming the projection
is defined on a polar direction 
u = (cos θ,− sin θ) with
anti-clockwise rotation, the final discrete approximation of
the directional differentiator Dn


uδ can be represented by the

Fig. 2. First order directional derivative kernels rotated at θ = π/4 and
cutoff ωc = 1 (rad). Impulse response are shown in first row, frequency
response in second row, and contour level of the frequency response in third
row. (a) Gaussian. (b) Savitzky-Golay. (c) MaxFlat.

following 2D–convolution kernel

K2D(n, θ, Px , Py) =
n∑

k=0

(−1)k
(

n

k

)
cosn−k θ sink θ dT

k dn−k .

(14)

The above kernel design includes arbitrary order of differentia-
tion ‘n’ in a predefined rotating angle ‘θ ’ and cutoff frequency
levels controlled by ‘Px ’ and ‘Py’that are tuned separately for
both axes x and y, respectively.

Table V displays a few 2D MaxFlat kernels both in
spatial and frequency domain up to fourth OD with four
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Fig. 3. Single image up-sampling from down-sampled version of Curiosity image by scale factor of two using bi-cubic [64], Gaussian (G), Simoncelli (S),
Savitzky-Golay (SG), and MaxFlat (M) interpolating kernels shown in (b)-(f). Results of super-resolution problem using SRCNN [13] is also shown in (g).

different steering directions θ = {0, π
4 , π

2 , 3π
4 }. The sharp

localization in frequency domain is apparent. At the lowest
derivative level n = 0, which is equivalent to a lowpass
(interpolation) filter, the kernel is non-directional. Here the
filter order is set to L = 25 and flatness degree to Px =
Py = 12 for all cases. Accordingly, the corresponding cutoff
frequency level for this flatness degree is ωc = 0.3π similar
to the function-profile obtained in Table III. For numerical
implementation in computer programming, such as MATLAB,
the directional differentiation of an image I can be for-
mulated by means of two-dimensional convolution problem
imfilter(I,K2D,’boundary’) function, where I is the
input image, K2D is the 2D MaxFlat kernel, and ’boundary’
is the boundary–condition. The relative performance of the
proposed MaxFlat kernel compared to the steerable Gaussian
[37] and Savitzky-Golay filters are also shown in Figure 2. The
kernels are the first order differentiators rotated at θ = π/4
with cutoffs set at ωc = 1 radian. As it shown, the Gaussian
provides slow decay response and Savitzky-Golay contains
ripple artifacts at the stop-band. In contrast, the MaxFlat
provides a balanced response with sharp decay and free artifact
on the stop-band.

V. APPLICATIONS

In this section, we present the results achieved by apply-
ing the proposed 2D MaxFlat kernels in three applications
i.e. image interpolation, edge detection, and unsharp masking
to study the utility of zero, first, and second orders of differen-
tiations, respectively. Throughout these applications the terms
of evaluation for quality assessment of a reconstructed image
are selected among three measurements: two reference-based
indexes using (a) peak-signal-to-noise-ratio (PSNR) which
is sensitive to statistical deviation of pixel-to-pixel match,
and (b) mean structural similarity index measure (MSSIM)
which is sensitive to geometrical miss-matches [65], and one

non-reference based metric using (c) sharpness index (SI)
which is sensitive to image blurriness [66], [67]. For better
visual judgment of the generated images the smoothing effect
from the viewer software e.g. Adobe Acrobat should be
turned off.

A. Image Interpolation: Variant of Zero
Order Derivative

Image interpolation is a classical problem referring to
recovering high-resolution image (up-sampled) image from its
under-sampled version in a single-image based level [13], [64].
A test image is first down-sampled by means of a lowpass
(interpolating) filter and then up-sampled back using the same
filter to compare the recovery image from its original image.

Our aim in this section is to study the utility of different
zero-order (n = 0) lowpass filters introduced in previous
section. The experiments here are conducted on the Curiosity
image1 shown in Figure 3(a). The image is down-sampled by
scale-factor of two and up-sampled back using different inter-
polation filters: (a) bi-cubic [64] (imresize build-in function
in MATLAB), (b) zero-order lowpass derivatives of Gaussian,
Simoncelli, Savitzky-Golay, and MaxFlat with cutoff frequen-
cies set at ωc = π/2. To obtain relative cutoff frequency by
means of different lowpass filters, refer to Section III for more
detail explanation on how the pertinent parameters should
be tuned to achieve certain cutoff levels. Furthermore, we
adopt the sixth comparison method using multilayer decom-
position approach in [13] known as the method of super
resolution convolution neural network (SRCNN). This method
creates a mapping between low and high-end resolution images
using deep convolutional neural network (CNN). The mapping
accepts the up-sampled bi-cubic interpolated image shown

1PIA20316: Curiosity self-portrait at Martian Sand Dune taken
in Jan 19, 2016. A 512 × 512 tile is cropped from the original TIFF format
available online at http://photojournal.jpl.nasa.gov/targetFamily/Mars.
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Fig. 4. Canny edge detection performance by means of four different derivative kernels. The cutoff frequency is set to ωc = 0.75 (rad). The top images
corresponds to the velocity vectors overlaid on selected image patch as arrows of gradient components {∂ I/∂x, ∂ I/∂y}. (a) Original Image. (b) Gaussian.
(c) Simoncelli. (d) Savitzky-Golay. (e) proposed MaxFlat.

in Figure IV-A as an input and breaks it down to multiple
patches for sparse exploration by means of three decomposing
layers. The network is trained prior in advance to optimize
the decomposition filters for reconstruction. The result of
reconstruction using the above methods are shown in Figure 3.
The means of evaluation here is PSNR and according to
the rank observation, SCRNN and MaxFlat perform better
with better visual quality as opposed to the other approaches.
Though SRCNN is performing better than MaxFlat, it required
extensive amount of computational power for reconstruction.
For instance, the first layer of the SRCNN algorithm requires
64 layer of image decomposition by means of pre-trained
2D filter kernels, while the under-sampling/up-sampling meth-
ods such as MaxFlat only decomposed the image using
one-shot convolution using a separable 2D kernel coefficients.
Up-sampled image using the Gaussian and Simoncelli filters
provide ripple-free recovery. However, the texture details are
smoothed and pixelated. Notice the hallucinated lines intro-
duced by Savtizky-Golay due to the side-lobe artifacts on the
stop-band. Such artifacts are directly related to the human
perception error which indicates such filters are not suitable
for this application. In contrast, MaxFlat approach recovers
with much less halo artifacts and better detail preservation.

B. Canny Edge-Detection: Variant of First
Order Derivative

In this section, we study the problem of the edge detection
using Canny’s algorithm [4] that has been widely applied in
many computer vision applications. The method is constructed
by three main phases to create an abstract level of image
edge structures. First the smooth gradients of the image are
obtained using Gaussian kernels along horizontal (θ = 0) and
vertical (θ = π/2) directions. In the second stage, an edge
thinning is applied by non-maximum suppression technique,
and finally an edge tracking by hysteresis method is applied
to find the connected strong gradients. For more detail on

the implementation of Canny’s algorithms, please refer to the
build-in MATLAB function edge(I,‘canny’).

Our contribution here is to replace the gradient calcula-
tion in the first stage of the algorithm by MaxFlat kernels
defined in previous section. We choose two rotating direc-
tions θ = {0, π/2} to match the horizontal and vertical
derivative kernels. The default value of the Gaussian scale
is σ = √

2 with tap-length filter size of L = 8 within
the edge function. We used the same tap-length size and
set the flatness degrees to Px = Py = 2 which corre-
sponds to the cutoff frequency of the Gaussian. Furthermore,
we deploy Simoncelli and Savitzky-Golay filters with similar
tuning schemes to study their performances. Figure 4 demon-
strates the results of Canny edge detection on pirate image
applied by all four different gradient kernels. The figure
also includes the gradient vector fields on the selected patch
which contains a slanted edge structure. Ideally, the gradient
vectors should be perpendicular to the edge direction. Notice
the deviation of gradient fields using Simoncelli’s filter. The
Savitzky-Golay also creates a longer transition period from
dark to the bright region in the image due to the side-lob
artifacts of the filter. We have found MaxFlat filter creates
much cleaner edges using the Canny’s steps compared to
Gaussian. Notice the vector fields perturbation on the white
area of the image patch using Gaussian as opposed to MaxFlat.
This complies with the discussion and analysis we made in
Section III where Gaussian perturbs high frequencies, while
MaxFlat contains minimal artifacts beyond the cutoff level
i.e. stop-band.

C. Unsharp Masking: Variant of Second
Order Derivative

In classical unsharp masking (UM) method, the image edges
are enhanced by emphasizing high frequency information [1]
using a highpass filter. UM is a variant of sharpening technique
which is applied on a blurred image to accent the edges in
one-shot convolution problem. This is obtained by calculating
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Fig. 5. Performance of unsharp masking on five blurred levels of LIVE image database (145 blurred images in total) using four different filters of Gaussian (G),
Simoncelli (S), Savitzky-Golay (SG), and proposed MaxFlat (M). Their quality measure is averaged over 29 sharpened images in each blur level on
different cutoff frequencies. The quality assessment is defined by two reference based measures of PSNR and MSSIM, and one no-reference based using SI.
(a) Avg blur: σ̄ = 4.74. (b) Avg blur: σ̄ = 1.8. (c) Avg blur: σ̄ = 1.25. (d) Avg blur: σ̄ = 0.94. (e) Avg blur: σ̄ = 0.60.

the image Laplacian i.e. second partial derivatives which
quadratically magnifies the frequency spectrum |iω|2 along
the horizontal and vertical axes. In general, UM is obtained
by subtracting the scaled version of a highpass filtered image
from the image itself i.e. Ī = I − α∇2 I , where α ∈ [0, 1]
is a positive scaling factor that tunes the strength of contrast
enhancement. The common approach to employ the Laplacian
operator is to utilize the second derivatives by Gaussian kernel
with smoothness degree σ . As mentioned, this pitching factor
mainly controls the range of perceived frequency and avoids
noise or aliasing artifacts in reconstruction. Tweaking this
scale low allows higher range of frequencies to be transferred,
which is of importance in images that contain high frequency
information.

Our main contribution here is to revise UM using the 2D
MaxFlat kernels introduced in Section IV-A using different
steering directions

Ī (�, P) = I − α
∑

θ∈�

I ∗ K2D(2, θ, Px , Py) (15)

where � is the set of selected rotating directions for
differentiation. In general, we can replace any lowpass deriv-
ative filters over MaxFlat to compare the utility of different
methods.

The empirical analysis is done here on the LIVE image
quality database [65], [68] which is distorted by Gaussian blur.
The database consists of 29 color Kodak images and for
every image five different blurring levels composed of 145
blurred images in total exist. The terms of evaluations are
PSNR, MSSIM, and SI. These metrics, all together, iden-
tifies the integrity of UM solutions deployed by different
kernels and lead us to a better quality judgment for recon-
struction. We select steering kernels of Gaussian [12], [37],
Simoncelli [32], and Savitzky-Golay [23]–[26] to compare

their utility as opposed to our proposed 2D MaxFlats.
Figure 5 elaborates on sharpening 145 blurred images from
LIVE database using all four 2D steering kernels. The quality
measure is reported on different cutoff frequencies. At every
cutoff level, we search for optimum index score obtained
by different steering angle resolution �θ = {π

2 , π
4 , π

6 , π
8 }.

The overall quantitative MaxFlat filter results compared to
the state-of-the-art filter solutions reveal descent improvement
over several quality measurements i.e. PSNR, MSSIM, and SI.
Note that these values are the average results of 29 sharpened
images (not single image result) implying that even small
amount of improvement over the other methods is significant.
As per the blur level decreases, higher cutoff frequencies are
needed to achieve high quality performance. The rank observa-
tion here is mainly given to MaxFlat and Savitzky-Golay since
they provide wider cutoff range solutions. MaxFlat offer even
better quality reconstruction compared to Savtizky-Golay since
it contains minimal stop-band artifacts. This is more evident on
SI quality assessment which is non-reference based measure.

It is worth noting that the sharpening results achieved
on less-blurred images (fifth category of blur level in
LIVE) might sound controversial since both MaxFlat and
Savitzky-Golay falls behind Gaussian and Simoncelli within
the reference-based quality index measures i.e. MSSIM and
PSNR. In fact sharpening such images with high cutoff
frequencies over-sharpens them compared to their reference
images. Although, the qualitative representation of the recon-
structed images are high, the MSSIM and PSNR gains are
poor. In contrary, the non-reference based SI measure yields
higher performance on the MaxFlat and Savitzky-Golay using
high cutoff filters. Table VI demonstrates such controversy
by sharpening an example image from the fifth category of
LIVE blurred image applied to low and high cutoff frequencies
ωc = {1, 2.5} (rad). As it can be observed, the MaxFlat
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TABLE VI

UNSHARP MASKING ON BLUR LEVEL FIVE Womenhat FROM LIVE DATABASE USING FOUR DIFFERENT FILTERS OF GAUSSIAN, SIMONCELLI,
SAVITZKY-GOLAY, AND PROPOSED MAXFLAT. TWO CUTOFF FREQUENCY RANGES ARE SET TO DESIGN FILTERS AND APPLIED ON THE BLURRED

IMAGE. THE QUALITY INDEX IS REPORTED AS QI=[MSSIM,PSNR,SI] ON THE SHARPENED IMAGES

TABLE VII

STATISTICAL SIGNIFICANCE TEST OF UNSHARP MASKING ON LIVE IMAGE DATABASE WITH 145 BLURRED IMAGES. THE SIGNIFICANCE OF QUALITY
INDEX MEASURES OF PSNR, MSSIM, AND SI ARE MATCHED AGAINST PAIRWISE COLLECTION OF FOUR DIFFERENT APPROACHES OF

GAUSSIAN (G), SIMONCELLI (S), SAVITZKY-GOLAY (SG), AND PROPOSED MAXFLAT (M). HERE THE FILTER

METHODS IN COLUMNS ARE COMPARED AGAINST THE COMPETING APPROACHES IN ROWS

produced sharper edges on high cutoff frequency as opposed
to the other approaches. Moreover, notice the brightness
gained by Gaussian filter on ωc = {2.5} in Table VI that

is linked to the deviation of Gaussian filter response once the
scale (variance) is decreased to obtain high cutoff frequency.
This is one of the main drawbacks of the Gaussian that adds
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Fig. 6. Unsharp masking performance on the Flower image using four different methods of Guassian, Simoncelli, Savitzky-Golay, and proposed MaxFlat
filters. The shade of colors in (b)-(e) correspond to SI measure of sharpened images with various cutoff frequency parameters and different steering angle
resolutions. The optimum performance of each method is found and are shown in (f)-(i). The optimum performance of the fullband (FB) (no-cutoff) sharpening
using MaxFlat/Savitzky-Golay filter is also shown in (j). Images shown from (k) to (o) are related to non-linear edge-aware image enhancement methods.

constant (DC) components on the gray pixel values at such
high cutoff levels. This can also be validated by observing the
second derivative response of the Gaussian kernel in Table I.
One way to fix this problem is to add another enhancing block
after the sharpening by linear normalization of the image gray
values. However, this is still not going to guarantee to balance
the brightness level of the processed image compared to its
original input image.

We conduct our last validation on LIVE image database by
counting the statistical significant of all three quality indexes
of PSNR, MSSIM, and SI by pair-wise matching of all four
different filter methods. Table VII elaborates on this matching
contest. For instance, within the fifth level category, which
contains 29 blurred images, the Gaussian yields 18 significant
sharpened images in terms of PSNR quality measure compared
to MaxFlat. The number of significance for each method is
found and compared to other competing approaches and accu-
mulated in total. As can be seen, MaxFlat outranks the others
in third and fourth blurred level by means of all quality index
measures. In fifth category, MaxFlat outperforms in terms of SI
measure, while falling behind the Gaussian in terms of PSNR
and MSSIM. With respect to first and second categories, which

contain severe blurred images, MaxFlat is mainly significant
in terms of reference based quality measures. However, it falls
behind Savitzky-Golay approach evaluated on SI measure.
This is simply because the high level blurred images contain
limited low frequency information and Savitzky-Golay mainly
perturbs non-informative high frequency structures in the
image due to its side-lobe responses. So, as a consequence
the SI turns to be sensitive to such false-positive information
deduced by Savitzky-Golay filter.

Note that the blurring artifacts in LIVE database are arti-
ficially introduced and do not necessarily represent natural
blur effect that is usually caused by either point spread
function (PSF) characteristics of the optical lens in camera
or introduced by focus miss-alignments during the acquisi-
tion setup. To further support the utility of the proposed
MaxFlat filter kernels, we provide more experiments on image
sharpening applied to natural blur effects. We select two
images of flower2 and folded-shirt from Garment dataset3 [73]

2Available to download from http://www.cs.huji.ac.il/~raananf/projects/eaw/
3Available to download from http://clopema.felk.cvut.cz/color_and_depth_

dataset.html
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Fig. 7. Unsharp masking performance on the folded shirt image using four different methods of Guassian, Simoncelli, Savitzky-Golay, and proposed MaxFlat
filters. The shade of colors in (b)-(e) correspond to SI measure of sharpened images with various cutoff frequency parameters and different steering angle
resolutions. The optimum performance of each method is found and are shown in (f)-(i). The optimum performance of the fullband (FB) (no-cutoff) sharpening
using MaxFlat/Savitzky-Golay filter is also shown in (j).

Fig. 8. Unsharp masking performance on the doll HDR image using four different methods of Guassian, Simoncelli, Savitzky-Golay, and proposed MaxFlat
filters. The shade of colors in (b)-(e) correspond to SI measure of sharpened images with various cutoff frequency parameters and different steering angle
resolutions. The optimum performance of each method is found and are shown in (f)-(i). The optimum performance of the fullband (FB) (no-cutoff) sharpening
using MaxFlat/Savitzky-Golay filter is also shown in (j).

restored in eight-bit levels, and one high-dynamic-range
(HDR) image of Doll4 [74]. All these three images are in raw
non-compressed formats. It worth noting that these images
have been extensively used as benchmark tests for variety
of image enhancement methods in [69]–[72]. We conduct a
heuristic analysis on all three images by varying different

4Available to download from http://people.csail.mit.edu/yzli/

steering angles and cutoff frequency of the deployed filters
for unsharp masking. The SI quality index of the sharpened
images are calculated for different parameter variations and
demonstrated in Figures 6, 7, and 8 from (b) to (e). The
optimum performance of all approaches are found i.e. maxi-
mum SI and the corresponding sharpened images are shown
from (f) to (j) within the same figures. As can be observed, the
MaxFlat filter applied for unsharp masking is outperforming
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by preserving more detailed edges compared to the other filter
methods. Regarding the flower image, we have also included
the results from edge-aware enhancement methods in Figure 6
from (k) to (o) known as the interpolated convolution (IC) [71],
regular-wavelet (RW) and edge-avoiding wavelets (EAW) [69],
multi-scale (MS) tone and detail manipulation [70], and
mixed-domain filtering (MDF) [72]. It worth noting that all
these methods are non-linear approaches for detail enhance-
ments and require high computation powers compared to linear
convolution calculations applied in unsharp masking. Though
the relative performance of these two different methodologies
might not be a fair comparison, however it is interesting to
see the level of detail manipulation of images compared in
side-by-side. The non-linear approaches are mainly introduced
to balance out between edge-preservation and detail smooth-
ing within the images by regulating the relative information
between spatial and pixel illumination. Whereas, in unsharp
masking this is only done in the pixel illumination level. With
regards to doll HDR image in 8 please note that we have used
logarithmic scale on the image gray level for processing in
order to balance out the tone-map of the image. We did not use
any additional compression or histogram manipulation of the
gray levels that usually taken place such as in [69]–[72]. This
is simply to avoid the information loss in frequency details.
The unsharp masking done by fullband differentiation (no
cutoff) do not necessarily yields good quality reconstruction.
While the sharpening quality of flower and doll outperform
by fullband MaxFlat/Savtizky-Golay kernels, folded shirt in
Figure 7 reveals poor quality recovery which the sharpened
image is contaminated by noise/aliased information.

VI. CONCLUSION

We have developed a numerical framework based on max-
imally flat technique to design compact kernels of low-
pass/fullband differentiators in a closed form solution that
are sharply localized in the Fourier space. The kernels com-
prised of FIR filters in variety of derivative orders and cutoff
frequencies. We extended our design by incorporating these
filters into separable 2D kernels to obtain the directional
differentiation of an image in arbitrary rotating angle. This
compares favorably with the existing steerable filters in the
literature [12], [32], [37] that are unable to set sharp cutoff
ranges on higher frequencies. This is of paramount importance
in applications where there is a need to transfer fine image
structures with high-frequency information. In particular, we
tested our 2D MaxFlat kernels in three different applications.
The utility of zero order lowpass (interpolation) filter was
studied in image interpolation problem. First order was also
studied in Canny edge detection where superior results were
achieved compared to competing filter solutions. Finally, the
second order differentiation was studied in unsharp masking
(UM) to sharpen images from their blurry observation. The
overall results in all three applications suggested that the
proposed kernels are robust towards different cutoff para-
meters. For instance, in UM, the existing methods rely on
deploying a Gaussian kernel to approximate the Laplacian
operator. The sensitivity of such kernels with respect to the
scaling parameters makes them very challenging for accurate

reconstruction. This is, in fact, the main reason of introducing
adaptive techniques in [1]–[3] to mitigate such deficiencies.

2D MaxFlat kernels could be of interest to broad audi-
ences in image processing. The future work of this paper
will study the applications in tensor field problems [15] to
determine the structural orientation in medical images. They
will emerge as a generic dictionary solutions in replacement
over learning based approaches such as super-resolution meth-
ods in [3], [13], and [75]. They can be also investigated to
derive features in computer vision problems such as SIFT and
SURF [8]–[11], [76].
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