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Chapter 1

Introduction

1.1 What is MaxPol Package?

MaxPol is an open source library codes written in MATLAB offers a comprehensive tool

for numerical differentiation. The method is based on undetermined coefficients and

maxflat design technique to render variety of FIR kernels in closed form that can be used

to approximate fullband/lowpass derivatives of a given discrete signals and images.

The term “fullband” is the same terminology used in numerical difference methods for

high-order-of-accuracy differentiation, meaning that the filter response (aka transform

function) is obedient to the ideal derivative response. The term “lowpass” is used when

a cutoff frequency is set to truncate the filter response beyond a certain level, that is

usually assumed to contain noise/aliasing artifacts. While you can set a cutoff threshold

to suppress the noise on the stop-band with free-residues, the differentiator is highly

accurate on the pass-band.

MaxPol V1.0 supports a number of utilities including: (a) FIR kernels up to any

order of differentiation in both centralized and staggered scheme, (b) arbitrary side-shift

nodes for discrete boundary formulation, (b) derivative matrix for global estimation of

derivatives of vector-valued (discrete) signals, (c) tensor mode decomposition in any order

of dimension e.g. 2D images and 3D volumes, and (d) two dimensional (2D) directional

(steerable) derivative kernels for image decomposition.

To use the MaxPol package effectively and how it compares with other existing methods

in the literature, please refer to [1,2] for more information. The package contains intuitive

examples from diverse applications in signal and image processing.

1



Chapter 1. Introduction 2

1.2 Which disciplinary fields can use this package?

MaxPol package provides comprehensive numerical solutions for uniform discrete differen-

tiation that can be of interest to broad audiences in engineering and science.

In the context of image processing, the package can be used in diverse imaging applica-

tions. Basically, whenever you need to compute discrete derivatives of an image in the form

of gradient, Hessian, or even high order tensor, this package can be easily used for accurate

approximations. In forward imaging problems MaxPol can be used to estimate high order

feature moments applied in edge detection, curvature estimation, image enhancement,

and image sharpening. MaxPol can be also used in inverse problems for image restoration

purposes such as in gradient surface reconstruction, image stitching, image diffusion,

variational regularization problems applied in image in-painting, enhancement/de-noising,

deconvolution problems, and many more.

The package can be also utilized as a numerical solver to the PDE problems applied

in fluid mechanics, acoustics, and wave equations. It can be of interest in dynamic control

systems to directly estimate state variables to avoid noise robust numerical integrations.

1.3 Licensing

MaxPol is an open source MATLAB library codes. It is intended to be free for academic

research and teaching purposes. MaxPol is covered under GNU General Public License.

Copyright c© 2017 Mahdi S. Hosseini

MaxPol is a free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, version 3 of the License

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Please contact mahdi.hosseini@mail.utoronto.ca for more information.

http://www.gnu.org/licenses/
mahdi.hosseini@mail.utoronto.ca


Chapter 2

Installation

2.1 Supported Platforms

MaxPol version 1.0 is a package contains several MATLAB m-file function codes. It can

be run in many platforms such as Windows, Mac, and Linux. You will be needing to

install MATLAB software in your PC and run maxpol startup.m file before you use the

library.

2.2 Third-party codes included in MaxPol Package

The software package includes third party codes namely, Savtizky-Golay differentiators

available from 1 introduced in [3–7] and Lagrangian differentiators available from 2

introduced in [8, 9] . These functions are used in several demo examples to compare their

performance with MaxPol differentiators.

1https://www.mathworks.com/matlabcentral/fileexchange/4038-savitzky-golay-smoothing-and-differentiation-filter
2http://faculty.washington.edu/rjl/fdmbook/matlab/fdcoeffF.m

3
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Chapter 3

The Basics

3.1 Parameter Description

The parameters used within the MaxPol MATLAB functions are described as follows:

l: order which defines the tap-length of FIR derivative filter that is 2l+1 for centralized

and 2l for staggered scheme.

n: order of differentiation.

P: degree of maximally polynomial at zero frequency of FIR derivative filter. Another

interpretation of this parameter is it controls the cutoff frequency level of the filter

from the lowest possible value n≤P all the way to its maximum level i.e. P≤2l for

centralized and P≤2l-1 for staggered scheme. The maximum level in fact corresponds

to the fullband response (relaxed cutoff).

s: amount of side-shift of the filter. When s=0 is selected zero then there is no side shift

and it implies that the FIR kernel approximates the derivative at the center of the

filter. With positive and negative non-zero side-shifts, the filter approximates the

derivative towards the left and right boundaries, respectively.

nod: accepts either ‘centralized’ or ‘staggered’ to determine the difference scheme.

sym flag: accepts either ‘true’ or ‘false’ which determines the method of FIR

coefficient calculation. When the flag is turned on then symbolic calculation is

performed to compute equations (11) and (12) from [1]. When the flag is turned off

then numerical computations are performed to compute the coefficients from the same

equations. In case of fullband filter design, i.e. P=2l for centralized and P=2l-1 for

staggered, the closed form solutions from Theorems 3 and 4 from [1] are recalled. Note

that the symbolic calculation requires high computational effort in computer.

sparse flag: accepts either true or false for sparse restoration of the derivative matrix.

theta: direction/angle in radians for directional image differentiation

4
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3.2 FIR Derivative kernels

Two main MATLAB functions are explained here to produce FIR derivative coefficients

in centralized and staggered schemes. They read as follows

[c] = derivcent(l, P, s, n, sym flag)

This function generates centralized derivative coefficients with tap length of 2l+1. With

different combinations of l and P you can generate fullband or lowpass coefficients. Our

recommendation is to turn on the symbolic flag for lowpass differentiation P<2l to avoid

numerical perturbations of coefficients. If you are using this for fullband differentiation

P=2l then you can turnoff this flag to avoid delay time for symbolic processing and

maintain high numerical precision.

Few examples of the centralized FIR kernels are presented in Tables 3.1, 3.2, and 3.4

for zero, first, and second order derivatives.

[c] = derivstag(l, P, s, n, sym flag)

This function generates staggered derivative coefficients with tap length of 2l. With

different combinations of l and P you can generate fullband or lowpass coefficients. Our

recommendation is to turn on the symbolic flag for lowpass differentiation P<2l-1 to avoid

numerical perturbations of coefficients. If you are using this for fullband differentiation

P=2l-1 then you can turnoff this flag to avoid delay time for symbolic processing and

maintain high numerical precision.

Few examples of the staggered FIR kernels are presented in Tables 3.1, 3.3, and 3.5

for zero, first, and second order derivatives.

Without loss of generality, these two MATLAB functions can be easily called to

produce arbitrary derivative orders such as first, second, third, fourth, etc. Arbitrary

polynomial degrees can be set to generate filters. With ordinary desktop computers, you

can achieve filter tap-lengths of < 100 with symbolic calculations which is much higher

than what we usually select for signal/image processing tasks. Moreover, the filter can be

generated in arbitrary side-shift nodes for all fullband and lowpass differentiation. For

more information on the filter frequency response please refer to Figures 3 and 4 in [1].
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Table 3.1: List of examples for zero order centralized FIR derivative coefficients, here s=0. The term zero order differentiation is
equivalent to lowpass/interpolating filter.

n l P c (centralized)

0 1 0 [1,2,1]/4

0 1 2 [0,1,0]

0 2 0 [1,4,6,4,1]/16

0 2 2 [-1,4,10,4,-1]/16

0 2 4 [0,0,1,0,0]

0 3 0 [1,6,15,20,15,6,1]/64

0 3 2 [-1,0,9,16,9,0,-1]/32

0 3 4 [1,-6,15,44,15,-6,1]/64

0 3 6 [0,0,0,1,0,0,0]

0 4 0 [1,8,28,56,70,56,28,8,1]/256

0 4 2 [-3,-8,12,72,110,72,12,-8,-3]/256

0 4 4 [3,-8,-12,72,146,72,-12,-8,3]/256

0 4 6 [-1,8,-28,56,186,56,-28,8,-1]/256

0 4 8 [0,0,0,0,1,0,0,0,0]

0 5 0 [1,10,45,120,210,252,210,120,45,10,1]/1024

0 5 2 [-1,-5,-5,20,70,98,70,20,-5,-5,-1]/256

0 5 4 [3,0,-25,0,150,256,150,0,-25,0,3]/512

0 5 6 [-1,5,-5,-20,70,158,70,-20,-5,5,-1]/256

0 5 8 [1,-10,45,-120,210,772,210,-120,45,-10,1]/1024

0 5 10 [0,0,0,0,0,1,0,0,0,0,0]

n l P c (staggered)

0 1 1 [1,1]/2

0 2 1 [1,3,3,1]/8

0 2 3 [-1,9,9,-1]/16

0 3 1 [1,5,10,10,5,1]/32

0 3 3 [-3,5,30,30,5,-3]/64

0 3 5 [3,-25,150,150,-25,3]/256

0 4 1 [1,7,21,35,35,21,7,1]/128

0 4 3 [-5,-7,35,105,105,35,-7,-5]/256

0 4 5 [15,-63,35,525,525,35,-63,15]/1024

0 4 7 [-5,49,-245,1225,1225,-245,49,-5]/2048

0 5 1 [1,9,36,84,126,126,84,36,9,1]/512

0 5 3 [-7,-27,0,168,378,378,168,0,-27,-7]/1024

0 5 5 [35,-45,-252,420,1890,1890,420,-252,-45,35]/4096

0 5 7 [-35,225,-504,0,4410,4410,0,-504,225,-35]/8192

0 5 9 [35,-405,2268,-8820,39690,39690,-8820,2268,-405,35]/65536
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Table 3.2: List of examples for first order centralized FIR derivative coefficients, here s=0.
n l P c (centralized)

1 1 2 [-1,0,1]/2

1 2 2 [-1,-2,0,2,1]/8

1 2 4 [1,-8,0,8,-1]/12

1 3 2 [-1,-4,-5,0,5,4,1]/32

1 3 4 [5,-12,-39,0,39,12,-5]/96

1 3 6 [-1,9,-45,0,45,-9,1]/60

1 4 2 [-1,-6,-14,-14,0,14,14,6,1]/128

1 4 4 [2,1,-16,-27,0,27,16,-1,-2]/96

1 4 6 [-33,166,-174,-978,0,978,174,-166,33]/1920

1 4 8 [3,-32,168,-672,0,672,-168,32,-3]/840

1 5 2 [-1,-8,-27,-48,-42,0,42,48,27,8,1]/512

1 5 4 [11,32,-39,-256,-322,0,322,256,39,-32,-11]/1536

1 5 6 [-73,160,445,-1280,-2890,0,2890,1280,-445,-160,73]/7680

1 5 8 [279,-2040,5485,-2640,-31290,0,31290,2640,-5485,2040,-279]/53760

1 5 10 [-2,25,-150,600,-2100,0,2100,-600,150,-25,2]/2520

Table 3.3: List of examples for first order staggered FIR derivative coefficients, here s=0.
n l P c (staggered)

1 1 1 [-1,1]

1 2 1 [-1,-1,1,1]/4

1 2 3 [1,-27,27,-1]/24

1 3 1 [-1,-3,-2,2,3,1]/16

1 3 3 [7,-31,-38,38,31,-7]/96

1 3 5 [-9,125,-2250,2250,-125,9]/1920

1 4 1 [-1,-5,-9,-5,5,9,5,1]/64

1 4 3 [13,-11,-111,-87,87,111,11,-13]/384

1 4 5 [-149,1007,-2629,-3785,3785,2629,-1007,149]/7680

1 4 7 [75,-1029,8575,-128625,128625,-8575,1029,-75]/107520

1 5 1 [-1,-7,-20,-28,-14,14,28,20,7,1]/256

1 5 3 [19,33,-120,-368,-234,234,368,120,-33,-19]/1536

1 5 5 [-409,1449,756,-10516,-9414,9414,10516,-756,-1449,409]/30720

1 5 7 [2161,-19149,73680,-147224,-242214,242214,147224,-73680,19149,-2161]/430080

1 5 9 [-1225,18225,-142884,926100,-12502350,12502350,-926100,142884,-18225,1225]/10321920
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Table 3.4: List of examples for second order centralized FIR derivative coefficients, here
s=0.

n l P c (centralized)

2 1 2 [1,-2,1]

2 2 2 [1,0,-2,0,1]/4

2 2 4 [-1,16,-30,16,-1]/12

2 3 2 [1,2,-1,-4,-1,2,1]/16

2 3 4 [-1,5,1,-10,1,5,-1]/12

2 3 6 [2,-27,270,-490,270,-27,2]/180

2 4 2 [1,4,4,-4,-10,-4,4,4,1]/64

2 4 4 [-7,12,52,-12,-90,-12,52,12,-7]/192

2 4 6 [17,-128,368,128,-770,128,368,-128,17]/720

2 4 8 [-9,128,-1008,8064,-14350,8064,-1008,128,-9]/5040

2 5 2 [1,6,13,8,-14,-28,-14,8,13,6,1]/256

2 5 4 [-5,-4,39,64,-34,-120,-34,64,39,-4,-5]/384

2 5 6 [173,-766,201,4504,-374,-7476,-374,4504,201,-766, 173]/11520

2 5 8 [-32,311,-1312,2832,1344,-6286,1344,2832,-1312,311,-32]/5040

2 5 10 [8,-125,1000,-6000,42000,-73766,42000,-6000,1000,-125,8]/25200

Table 3.5: List of examples for second order staggered FIR derivative coefficients, here
s=0.

n l P c (staggered)

2 2 3 [1,-1,-1,1]/2

2 3 3 [1,1,-2,-2,1,1]/8

2 3 5 [-5,39,-34,-34,39,-5]/48

2 4 3 [1,3,1,-5,-5,1,3,1]/32

2 4 5 [-11,35,57,-81,-81,57,35,-11]/192

2 4 7 [259,-2495,11691,-9455,-9455,11691,-2495,259]/11520

2 5 3 [1,5,8,0,-14,-14,0,8,5,1]/128

2 5 5 [-17,7,140,92,-222,-222,92,140,7,-17]/768

2 5 7 [919,-5397,8400,21032,-24954,-24954,21032,8400,-5397,919]/46080

2 5 9 [-3229,37107,-204300,745108,-574686,-574686,745108,-204300,37107,-3229]/645120



Chapter 3. The Basics 9

3.3 Derivative matrix

The MATLAB function to produce derivative matrix (square size) is explained for all four

(4) possible cases introduced in [1]. The function reads as follows.

[D, D forward] = derivmtx(l, P, n, N, nod, sparse flag, sym flag)

This function generates derivative matrix of square size N. With different combinations

of l and P you can derive fullband or lowpass coefficients embedded in the matrix rows.

Our recommendation is to turn on the symbolic flag for lowpass differentiation to avoid

numerical perturbations of coefficients. If you are using this for fullband differentiation

then you can turnoff this flag to avoid delay time for symbolic processing and maintain

high numerical precision. Two examples are provides to generate fullband derivative

matrices where l=3, n=1, N=8.

First order derivative matrix with nod=‘staggered’ nodes and P=5,

←−
D 1,8 =

1

1920



−9129 26765 −34890 25770 −10205 1689 0 0

−1689 1005 1430 −1110 435 −71 0 0

71 −2115 2070 10 −45 9 0 0

−9 125 −2250 2250 −125 9 0 0

0 −9 125 −2250 2250 −125 9 0

0 0 −9 125 −2250 2250 −125 9

0 0 −9 45 −10 −2070 2115 −71

0 0 71 −435 1110 −1430 −1005 1689


First order derivative matrix with nod=‘centralized’ nodes and P=6,

D1,8 =
1

60



−121 204 −60 −120 165 −84 16 0

−16 −41 60 20 −40 21 −4 0

4 −36 −5 40 0 −4 1 0

−1 9 −45 0 45 −9 1 0

0 −1 9 −45 0 45 −9 1

0 −1 4 0 −40 5 36 −4

0 4 −21 40 −20 −60 41 16

0 −16 84 −165 120 60 −204 121


For more information on the generation of these matrices and their spectral response

please refer to [1].
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3.4 2D Directional (Steerable) Derivatives

The MATLAB function to produce 2D directional derivative kernel is explained for all

possible selections introduced in [2]. The function reads as follows.

[K, bases] = derivdirec(l, P x, P y, n, theta, sym flag)

This function generates steerable derivative kernel of square size (2l+1)×(2l+1). The

decomposing bases are based on MaxPol derivative kernels. The function accepts the

tap-length polynomial of the filter l and maximally polynomial degrees P x, P y on both

x- and y- axes. Theses degrees corresponds to the cutoff level of each axes. The steering

angle of the kernel is determined by theta in radians.

Tables 3.6 and 3.7 display few filter responses of the directional derivative kernels

generated from this MATLAB function for their corresponding selected parameters. As

per the maxpol degree P increases, the cutoff threshold increases as a correspondence

transform wider range of frequency band for differentiation.

Table 3.6: 2D–convolution kernel K2D(n, θ, Px, Py) for arbitrary order of differentiation n,
steering angle θ, and cutoff frequency controlled by flatness degree Px and Py. Selected
parameters here are l=13, P x=P y=4 for all filters.

Impulse Response Frequency Response

n
=
0

θ = 0 θ = π
4

θ = π
2

θ = 3π
4

θ = 0 θ = π
4

θ = π
2

θ = 3π
4

n
=
1

n
=
2

n
=
3

n
=
4
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Table 3.7: 2D–convolution kernel K2D(n, θ, Px, Py) for arbitrary order of differentiation n,
steering angle θ, and cutoff frequency controlled by flatness degree Px and Py. Selected
parameters here are l=13, P x=P y=12 for all filters.

Impulse Response Frequency Response
n
=
0

θ = 0 θ = π
4

θ = π
2

θ = 3π
4

θ = 0 θ = π
4

θ = π
2

θ = 3π
4

n
=
1

n
=
2

n
=
3

n
=
4

2D directional kernels generated by this MATLAB function is favorably comparable

with their Gaussian counterparts introduced in [10, 11] for image feature extraction tasks.

In particular, MaxPol kernels are much accurate on frequency transformation of the

pass-band, also contain sharp roll-off on the cutoff band. We refer the reader to image

sharpening application in [2] for efficiency of these kernels.

For instance, Figure 3.1 shows the contour level of the frequency magnitudes drop

from pass-band to stop-band two dimension.

(a) impulse resp. (b) frequency resp.
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Figure 3.1: Contour level plot of 2D direction derivative kernel. Setup parameters are
l=13, P x=P y=12, and theta=pi/4. The equivalent cutoff level is ωcx = ωcy ≈ 0.5π
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3.5 How MaxPol generalizes the literature methods?

In this section we provide a summary on how MaxPol generalizes many methods in the

literature. For thorough study on the MaxPol we refer the reader to [1, 2]. In particular

we refer the reader to the Table 1, page 7 in [1] which provides an overview of existing

numerical difference methods in the literature, including MaxPol, and how they compare

to each other in terms of feature utilities. The following Table 3.8 demonstrates the cross

parameter that can be tweaked for MaxPol and becomes equivalent to other methods.

Table 3.8: List of numerical methods as variants of MaxPol method

Selected parameters in MaxPol

Fornberg [8, 9]
nod=‘centralized’, -l≤s≤l, n≥0, l≥0, P=2l

nod=‘staggered’ , -l≤s≤l, n≥0, l≥0, P=2l-1

Savitzky-Golay (Fullband) [3–7]
nod=‘centralized’, -l≤s≤l, n≥0, l≥0, P=2l

nod=‘staggered’ , -l≤s≤l, n≥0, l≥0, P=2l-1

Khan [12–16]
nod=‘centralized’, s=0, n≥0, l≥0, P=2l

nod=‘staggered’ , s=0, n≥0, l≥0, P=2l-1

Li [17] nod=‘centralized’, -l≤s≤l, n≥0, l≥0, P=2l, Dn

O’Leary [18,19] nod=‘centralized’, -l≤s≤l, n=1, l≥0, P=2l, Dn

Hassan [20] nod=‘centralized’, -l≤s≤l, n≥0, l≥0, P=2l, Dn

Carlsson [21] nod=‘centralized’, s=0, n=1, l≥0, P=2l

Kumar [22–24]
nod=‘centralized’, s=0, n=1, l≥0, P=2l

nod=‘staggered’ , s=0, n=1, l≥0, P=2l-1

Selesnick [25–27]
nod=‘centralized’, s=0, 0≤n≤1, l≥0, n≤P≤2l

nod=‘staggered’ , s=0, 0≤n≤1, l≥0, n≤P≤2l-1



Chapter 4

Demo Examples: A Quick Start

In this chapter we provide some intuitive examples from signal and image processing. In

particular, our aim here is to show how the MaxPol package can be utilized in different

applications for derivative approximation. The future release of MaxPol package will

contain more advanced and diverse imaging problems.

4.1 FIR frequency responses

From the root directory please navigate to \demo examples\FIR frequency responses\.
There are six demo examples provided in this directory:

demo MaxPol transfer function centralized scheme.m

demo MaxPol transfer function staggered scheme.m

demo SavtizkyGolay transfer function centralized scheme.m

demo SavtizkyGolay transfer function staggered scheme.m

demo Fornberg transfer function centralized scheme.m

demo Fornberg transfer function staggered scheme.m

The purpose of these MATLAB functions is to demonstrate the filter response (aka

transfer function) of associated derivative kernels from three different methods of MaxPol,

Savitzky-Golay, and Fornberg. Both MaxPol and Savitzky-Golay can be set to either

fullband or lowpass differentiation kernels, while the Fornberg’s is only limited to Fullband.

During the course of experiment three possible commands can entered to demonstrate

different responses:

(1) lowpass differentiation kernels

(2) fullband differentiation with zero side-shift (s=0) kernels

(3) fullband differentiation with non-zero side-shift kernels

13
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4.2 Spectral analysis of derivative matrix

From the root directory please navigate to \demo examples\spectral analysis of

derivative matrix\. There are four demo examples provided in this directory:

demo distribution of eigenvalues lowpass vs fullband.m

demo distribution of eigenvalues staggered vs centralized.m

demo distribution of eigenvalues study on polynomial order l.m

demo distribution of eigenvalues study on size N.m

The above MATLAB m-files demonstrate the spectral response of MaxPol derivative

matrices in terms of eigenvalue distribution. The evolution of eigenvalues are studied over

different parameter setup such as staggered/centralized, matrix size, polynomial degree,

and fullband/lowpass.

4.3 Directional (steerable) 2D derivatives

From the root directory please navigate to \demo examples\directional (steerable)

2D derivatives\. There is only one demo example provided in this directory:

demo 2D directional derivative.m

demonstrates a two dimensional (2D) derivative kernel image and its filter response.

You can set different parameters of derivative orders, steering angle, and cutoff levels to

visualized variety of kernels.

You can apply this kernel in an image convolution problem to approximate directional

derivative of an image with the corresponding parameters.

4.4 Forward signal and imaging problems

4.4.1 One dimensional (1D) signal

From the root directory please navigate to \demo examples\forward signal and imaging

problems\one dimensional decomposition\. There are two demo examples provided

in this directory:

demo sinusoid global accuracy analysis.m

demo sinusoid staggered vs centralized analysis.m

The above MATLAB m-files provides a thorough analysis on estimating first or-

der derivative of sinusoid signals. The efficiency of different polynomial degrees for

differentiation is studied through variety of harmonic frequencies.
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4.4.2 Two dimensional (2D) image/surface

From the root directory please navigate to \demo examples\forward signal and imaging

problems\two dimensional decomposition\. There are two demo examples provided

in this directory:

demo 2D zone plate MaxPol accuracy analysis.m

demo 2D zone plate accuracy analysis comparisons.m

These two MATLAB m-files analyze the two dimensional differentiation of zone

plate sinusoid grating image. Thorough comparison is made with other counterpart

methodologies to study the accuracy of numerical differentiation on boundary and interior

domains of the zone plate images.

4.4.3 Canny edge detection

From the root directory please navigate to \demo examples\forward signal and imaging

problems\Canny edge detection\. The main demo example is:

demo image edge detection.m

This MATLAB m-file performs Canny edge detection on an image utilized by three

different lowpass filters of MaxPol, Savitzky-Golay, and Gaussian. The Gaussian is the

conventional method proposed in [28]. You can set your own parameters of cutoff level

and polynomial degree for all three kernels and see how they affect the outcome results.

4.4.4 Three dimensional (3D) Volume

From the root directory please navigate to \demo examples\forward signal and imaging

problems\three dimensional decomposition\. The main demo example is:

demo 3D MRI decomposition.m

This MATLAB demo example in particular loads a 3D MRI volumetric data from

human brain, available from1, and differentiates the discrete data in its third dimension.

We cut from y-axis and demonstrate the result of decomposition in xz plane. The data is

originally contaminated with noise and we use both MaxPol and Savitzky-Golay methods

for lowpass differentiation.

You can initialize your own parameters to visualize different analysis of the data.

1http://brainweb.bic.mni.mcgill.ca/brainweb/
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4.5 Inverse imaging problems

From the root directory please navigate to \demo examples\inverse imaging problems\.
There are two demo examples provided in this directory:

demo zone plate noisy gradient surface recovery.m

demo image stitching.m

Both demo MATLAB m-files lies in the vicinity of gradient surface reconstruction.

The zone plate example is a reconstruction example from synthetic gradient samples using

different derivative matrix cases introduced in [1]. The second example is about real

application of stitch preview images in digital pathology. For more information on the

experimental details please refer to [1].



Chapter 5

Citing MaxPol

It is all the time a pleasure to hear from you to collect your thoughts and valuable feedback.

If you face with a bug in the codes please report at mahdi.hosseini@mail.utoronto.ca.

If you are using the maxpol package in your teaching and research area, we would like

to definitely hear from you to learn the technical diversity of our users. If you are using

MaxPol in your research publications, we appreciate if you use a similar sentence in your

paper as follows:

“For numerical solution of the problem (perhaps a PDE equation) we used MaxPol1, a

package to solve numerical differentiation [1, 2].”

The corresponding BiBTex citations are:

@article{HosseiniPlataniotisSIAM2017,
title={Finite Differences in Forward and Inverse Imaging Problems--MaxPol Design},
author={Mahdi S. Hosseini and Konstantinos N. Plataniotis},
journal={submitted to SIAM Journal on Imaging Sciences (SIIMS)},
year={2017},
publisher={SIAM}}

@article{HosseiniPlataniotisTIP2017,
title={Derivative Kernels: Numerics and Applications},
author={Mahdi S. Hosseini and Konstantinos N. Plataniotis},
journal={submitted to IEEE Transactions on Image Processing (TIP)},
year={2017},
publisher={IEEE}}

1MATLAB codes are available online at ...

17
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