Switch to side-by-side view

--- a
+++ b/functions/functions_ellipse/fit_ellipse.m
@@ -0,0 +1,288 @@
+function ellipse_t = fit_ellipse(x, y, im, filename, mask, dirResults, plotta, savefile)
+%
+% fit_ellipse - finds the best fit to an ellipse for the given set of points.
+%
+% Format:   ellipse_t = fit_ellipse( x,y,axis_handle )
+%
+% Input:    x,y         - a set of points in 2 column vectors. AT LEAST 5 points are needed !
+%           axis_handle - optional. a handle to an axis, at which the estimated ellipse 
+%                         will be drawn along with it's axes
+%
+% Output:   ellipse_t - structure that defines the best fit to an ellipse
+%                       a           - sub axis (radius) of the X axis of the non-tilt ellipse
+%                       b           - sub axis (radius) of the Y axis of the non-tilt ellipse
+%                       phi         - orientation in radians of the ellipse (tilt)
+%                       X0          - center at the X axis of the non-tilt ellipse
+%                       Y0          - center at the Y axis of the non-tilt ellipse
+%                       X0_in       - center at the X axis of the tilted ellipse
+%                       Y0_in       - center at the Y axis of the tilted ellipse
+%                       long_axis   - size of the long axis of the ellipse
+%                       short_axis  - size of the short axis of the ellipse
+%                       status      - status of detection of an ellipse
+%
+% Note:     if an ellipse was not detected (but a parabola or hyperbola), then
+%           an empty structure is returned
+
+% =====================================================================================
+%                  Ellipse Fit using Least Squares criterion
+% =====================================================================================
+% We will try to fit the best ellipse to the given measurements. the mathematical
+% representation of use will be the CONIC Equation of the Ellipse which is:
+% 
+%    Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0
+%   
+% The fit-estimation method of use is the Least Squares method (without any weights)
+% The estimator is extracted from the following equations:
+%
+%    g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f
+%
+%    where:
+%       A   - is the vector of parameters to be estimated (a,b,c,d,e)
+%       x,y - is a single measurement
+%
+% We will define the cost function to be:
+%
+%   Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c)
+%            = (X*A+f_c)'*(X*A+f_c) 
+%            = A'*X'*X*A + 2*f_c'*X*A + N*f^2
+%
+%   where:
+%       g_c(x_c,y_c;A) - vector function of ALL the measurements
+%                        each element of g_c() is g(x,y;A)
+%       X              - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ]
+%       f_c            - is actually defined as ones(length(f),1)*f
+%
+% Derivation of the Cost function with respect to the vector of parameters "A" yields:
+%
+%   A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X)
+%
+% Which yields the estimator:
+%
+%       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+%       |  A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X)  |
+%       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+%
+% (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on)
+%  
+% NOW, all that is left to do is to extract the parameters from the Conic Equation.
+% We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1;
+%
+%    Recall the conic representation of an ellipse:
+% 
+%       A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
+% 
+% We will check if the ellipse has a tilt (=orientation). The orientation is present
+% if the coefficient of the term "x*y" is not zero. If so, we first need to remove the
+% tilt of the ellipse.
+%
+% If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse.
+% we will remove the tilt of the ellipse so as to remain with a conic representation of an 
+% ellipse without a tilt, for which the math is more simple:
+%
+% Non tilt conic rep.:  A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0
+%
+% We will remove the orientation using the following substitution:
+%   
+%   Replace x with cx+sy and y with -sx+cy such that the conic representation is:
+%   
+%   A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0
+%
+%   where:      c = cos(phi)    ,   s = sin(phi)
+%
+%   and simplify...
+%
+%       x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ...
+%           y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0
+%
+%   The orientation is easily found by the condition of (B_new=0) which results in:
+% 
+%   2A*cs +(c^2-s^2)B -2Ccs = 0  ==> phi = 1/2 * atan( b/(c-a) )
+%   
+%   Now the constants   c=cos(phi)  and  s=sin(phi)  can be found, and from them
+%   all the other constants A`,C`,D`,E` can be found.
+%
+%   A` = A*c^2 - B*c*s + C*s^2                  D` = D*c-E*s
+%   B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0      E` = D*s+E*c 
+%   C` = A*s^2 + B*c*s + C*c^2
+%
+% Next, we want the representation of the non-tilted ellipse to be as:
+%
+%       Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1
+%
+%       where:  (X0,Y0) is the center of the ellipse
+%               a,b     are the ellipse "radiuses" (or sub-axis)
+%
+% Using a square completion method we will define:
+%       
+%       F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`)
+%
+%       Such that:    a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 )
+%                     c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 )
+%
+%       which yields the transformations:
+%       
+%           X0  =   -D`/(2*A`)
+%           Y0  =   -E`/(2*C`)
+%           a   =   sqrt( abs( F``/A` ) )
+%           b   =   sqrt( abs( F``/C` ) )
+%
+% And finally we can define the remaining parameters:
+%
+%   long_axis   = 2 * max( a,b )
+%   short_axis  = 2 * min( a,b )
+%   Orientation = phi
+%
+%
+
+%Ohad Gal (2019). 
+%fit_ellipse (https://www.mathworks.com/matlabcentral/fileexchange/3215-fit_ellipse), 
+%MATLAB Central File Exchange. Retrieved December 17, 2019.
+
+% initialize
+orientation_tolerance = 1e-3;
+
+% empty warning stack
+warning( '' );
+
+% prepare vectors, must be column vectors
+x = x(:);
+y = y(:);
+
+% remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on).
+mean_x = mean(x);
+mean_y = mean(y);
+x = x-mean_x;
+y = y-mean_y;
+
+% the estimation for the conic equation of the ellipse
+X = [x.^2, x.*y, y.^2, x, y ];
+a = sum(X)/(X'*X);
+
+% check for warnings
+if ~isempty( lastwarn )
+    disp( 'stopped because of a warning regarding matrix inversion' );
+    ellipse_t = [];
+    return
+end
+
+% extract parameters from the conic equation
+[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) );
+
+% remove the orientation from the ellipse
+if ( min(abs(b/a),abs(b/c)) > orientation_tolerance )
+    
+    orientation_rad = 1/2 * atan( b/(c-a) );
+    cos_phi = cos( orientation_rad );
+    sin_phi = sin( orientation_rad );
+    [a,b,c,d,e] = deal(...
+        a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
+        0,...
+        a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
+        d*cos_phi - e*sin_phi,...
+        d*sin_phi + e*cos_phi );
+    [mean_x,mean_y] = deal( ...
+        cos_phi*mean_x - sin_phi*mean_y,...
+        sin_phi*mean_x + cos_phi*mean_y );
+else
+    orientation_rad = 0;
+    cos_phi = cos( orientation_rad );
+    sin_phi = sin( orientation_rad );
+end
+
+% check if conic equation represents an ellipse
+test = a*c;
+switch (1)
+case (test>0),  status = '';
+case (test==0), status = 'Parabola found';  warning( 'fit_ellipse: Did not locate an ellipse' );
+case (test<0),  status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
+end
+
+% if we found an ellipse return it's data
+if (test>0)
+    
+    % make sure coefficients are positive as required
+    if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end
+    
+    % final ellipse parameters
+    X0          = mean_x - d/2/a;
+    Y0          = mean_y - e/2/c;
+    F           = 1 + (d^2)/(4*a) + (e^2)/(4*c);
+    [a,b]       = deal( sqrt( F/a ),sqrt( F/c ) );    
+    long_axis   = 2*max(a,b);
+    short_axis  = 2*min(a,b);
+
+    % rotate the axes backwards to find the center point of the original TILTED ellipse
+    R           = [ cos_phi sin_phi; -sin_phi cos_phi ];
+    P_in        = R * [X0;Y0];
+    X0_in       = P_in(1);
+    Y0_in       = P_in(2);
+    
+    % pack ellipse into a structure
+    ellipse_t = struct( ...
+        'a',a,...
+        'b',b,...
+        'phi',orientation_rad,...
+        'X0',X0,...
+        'Y0',Y0,...
+        'X0_in',X0_in,...
+        'Y0_in',Y0_in,...
+        'long_axis',long_axis,...
+        'short_axis',short_axis,...
+        'status','' );
+else
+    % report an empty structure
+    ellipse_t = struct( ...
+        'a',[],...
+        'b',[],...
+        'phi',[],...
+        'X0',[],...
+        'Y0',[],...
+        'X0_in',[],...
+        'Y0_in',[],...
+        'long_axis',[],...
+        'short_axis',[],...
+        'status',status );
+end
+
+% check if we need to plot an ellipse with it's axes.
+if plotta
+    
+    % rotation matrix to rotate the axes with respect to an angle phi
+    R = [ cos_phi sin_phi; -sin_phi cos_phi ];
+    
+    % the axes
+    ver_line        = [ [X0 X0]; Y0+b*[-1 1] ];
+    horz_line       = [ X0+a*[-1 1]; [Y0 Y0] ];
+    new_ver_line    = R*ver_line;
+    new_horz_line   = R*horz_line;
+    
+    % the ellipse
+    theta_r         = linspace(0,2*pi);
+    ellipse_x_r     = X0 + a*cos( theta_r );
+    ellipse_y_r     = Y0 + b*sin( theta_r );
+    rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
+    
+    axis_handle = figure;
+    imshow(im2double(im) + edge(mask))
+    hold on
+    plot(X0_in, Y0_in, 'rx', 'MarkerSize', 10);
+    
+    % draw
+    hold_state = get( axis_handle,'NextPlot' );
+    set( axis_handle,'NextPlot','add' );
+    plot( new_ver_line(1,:),new_ver_line(2,:),'r' );
+    plot( new_horz_line(1,:),new_horz_line(2,:),'r' );
+    plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' );
+    set( axis_handle,'NextPlot',hold_state );
+    
+    str = [filename ' ; ellipse fitting'];
+    
+    title(str, 'Interpreter', 'none')
+    
+    if savefile
+        export_fig(gcf, [dirResults str '.jpg']);
+    end %if save
+    
+end %if plotta
+
+