--- a +++ b/functions/functions_ellipse/fit_ellipse.m @@ -0,0 +1,288 @@ +function ellipse_t = fit_ellipse(x, y, im, filename, mask, dirResults, plotta, savefile) +% +% fit_ellipse - finds the best fit to an ellipse for the given set of points. +% +% Format: ellipse_t = fit_ellipse( x,y,axis_handle ) +% +% Input: x,y - a set of points in 2 column vectors. AT LEAST 5 points are needed ! +% axis_handle - optional. a handle to an axis, at which the estimated ellipse +% will be drawn along with it's axes +% +% Output: ellipse_t - structure that defines the best fit to an ellipse +% a - sub axis (radius) of the X axis of the non-tilt ellipse +% b - sub axis (radius) of the Y axis of the non-tilt ellipse +% phi - orientation in radians of the ellipse (tilt) +% X0 - center at the X axis of the non-tilt ellipse +% Y0 - center at the Y axis of the non-tilt ellipse +% X0_in - center at the X axis of the tilted ellipse +% Y0_in - center at the Y axis of the tilted ellipse +% long_axis - size of the long axis of the ellipse +% short_axis - size of the short axis of the ellipse +% status - status of detection of an ellipse +% +% Note: if an ellipse was not detected (but a parabola or hyperbola), then +% an empty structure is returned + +% ===================================================================================== +% Ellipse Fit using Least Squares criterion +% ===================================================================================== +% We will try to fit the best ellipse to the given measurements. the mathematical +% representation of use will be the CONIC Equation of the Ellipse which is: +% +% Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0 +% +% The fit-estimation method of use is the Least Squares method (without any weights) +% The estimator is extracted from the following equations: +% +% g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f +% +% where: +% A - is the vector of parameters to be estimated (a,b,c,d,e) +% x,y - is a single measurement +% +% We will define the cost function to be: +% +% Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c) +% = (X*A+f_c)'*(X*A+f_c) +% = A'*X'*X*A + 2*f_c'*X*A + N*f^2 +% +% where: +% g_c(x_c,y_c;A) - vector function of ALL the measurements +% each element of g_c() is g(x,y;A) +% X - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ] +% f_c - is actually defined as ones(length(f),1)*f +% +% Derivation of the Cost function with respect to the vector of parameters "A" yields: +% +% A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X) +% +% Which yields the estimator: +% +% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +% | A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X) | +% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +% +% (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on) +% +% NOW, all that is left to do is to extract the parameters from the Conic Equation. +% We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1; +% +% Recall the conic representation of an ellipse: +% +% A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0 +% +% We will check if the ellipse has a tilt (=orientation). The orientation is present +% if the coefficient of the term "x*y" is not zero. If so, we first need to remove the +% tilt of the ellipse. +% +% If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse. +% we will remove the tilt of the ellipse so as to remain with a conic representation of an +% ellipse without a tilt, for which the math is more simple: +% +% Non tilt conic rep.: A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0 +% +% We will remove the orientation using the following substitution: +% +% Replace x with cx+sy and y with -sx+cy such that the conic representation is: +% +% A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0 +% +% where: c = cos(phi) , s = sin(phi) +% +% and simplify... +% +% x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ... +% y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0 +% +% The orientation is easily found by the condition of (B_new=0) which results in: +% +% 2A*cs +(c^2-s^2)B -2Ccs = 0 ==> phi = 1/2 * atan( b/(c-a) ) +% +% Now the constants c=cos(phi) and s=sin(phi) can be found, and from them +% all the other constants A`,C`,D`,E` can be found. +% +% A` = A*c^2 - B*c*s + C*s^2 D` = D*c-E*s +% B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0 E` = D*s+E*c +% C` = A*s^2 + B*c*s + C*c^2 +% +% Next, we want the representation of the non-tilted ellipse to be as: +% +% Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1 +% +% where: (X0,Y0) is the center of the ellipse +% a,b are the ellipse "radiuses" (or sub-axis) +% +% Using a square completion method we will define: +% +% F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`) +% +% Such that: a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 ) +% c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 ) +% +% which yields the transformations: +% +% X0 = -D`/(2*A`) +% Y0 = -E`/(2*C`) +% a = sqrt( abs( F``/A` ) ) +% b = sqrt( abs( F``/C` ) ) +% +% And finally we can define the remaining parameters: +% +% long_axis = 2 * max( a,b ) +% short_axis = 2 * min( a,b ) +% Orientation = phi +% +% + +%Ohad Gal (2019). +%fit_ellipse (https://www.mathworks.com/matlabcentral/fileexchange/3215-fit_ellipse), +%MATLAB Central File Exchange. Retrieved December 17, 2019. + +% initialize +orientation_tolerance = 1e-3; + +% empty warning stack +warning( '' ); + +% prepare vectors, must be column vectors +x = x(:); +y = y(:); + +% remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on). +mean_x = mean(x); +mean_y = mean(y); +x = x-mean_x; +y = y-mean_y; + +% the estimation for the conic equation of the ellipse +X = [x.^2, x.*y, y.^2, x, y ]; +a = sum(X)/(X'*X); + +% check for warnings +if ~isempty( lastwarn ) + disp( 'stopped because of a warning regarding matrix inversion' ); + ellipse_t = []; + return +end + +% extract parameters from the conic equation +[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) ); + +% remove the orientation from the ellipse +if ( min(abs(b/a),abs(b/c)) > orientation_tolerance ) + + orientation_rad = 1/2 * atan( b/(c-a) ); + cos_phi = cos( orientation_rad ); + sin_phi = sin( orientation_rad ); + [a,b,c,d,e] = deal(... + a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,... + 0,... + a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,... + d*cos_phi - e*sin_phi,... + d*sin_phi + e*cos_phi ); + [mean_x,mean_y] = deal( ... + cos_phi*mean_x - sin_phi*mean_y,... + sin_phi*mean_x + cos_phi*mean_y ); +else + orientation_rad = 0; + cos_phi = cos( orientation_rad ); + sin_phi = sin( orientation_rad ); +end + +% check if conic equation represents an ellipse +test = a*c; +switch (1) +case (test>0), status = ''; +case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' ); +case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' ); +end + +% if we found an ellipse return it's data +if (test>0) + + % make sure coefficients are positive as required + if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end + + % final ellipse parameters + X0 = mean_x - d/2/a; + Y0 = mean_y - e/2/c; + F = 1 + (d^2)/(4*a) + (e^2)/(4*c); + [a,b] = deal( sqrt( F/a ),sqrt( F/c ) ); + long_axis = 2*max(a,b); + short_axis = 2*min(a,b); + + % rotate the axes backwards to find the center point of the original TILTED ellipse + R = [ cos_phi sin_phi; -sin_phi cos_phi ]; + P_in = R * [X0;Y0]; + X0_in = P_in(1); + Y0_in = P_in(2); + + % pack ellipse into a structure + ellipse_t = struct( ... + 'a',a,... + 'b',b,... + 'phi',orientation_rad,... + 'X0',X0,... + 'Y0',Y0,... + 'X0_in',X0_in,... + 'Y0_in',Y0_in,... + 'long_axis',long_axis,... + 'short_axis',short_axis,... + 'status','' ); +else + % report an empty structure + ellipse_t = struct( ... + 'a',[],... + 'b',[],... + 'phi',[],... + 'X0',[],... + 'Y0',[],... + 'X0_in',[],... + 'Y0_in',[],... + 'long_axis',[],... + 'short_axis',[],... + 'status',status ); +end + +% check if we need to plot an ellipse with it's axes. +if plotta + + % rotation matrix to rotate the axes with respect to an angle phi + R = [ cos_phi sin_phi; -sin_phi cos_phi ]; + + % the axes + ver_line = [ [X0 X0]; Y0+b*[-1 1] ]; + horz_line = [ X0+a*[-1 1]; [Y0 Y0] ]; + new_ver_line = R*ver_line; + new_horz_line = R*horz_line; + + % the ellipse + theta_r = linspace(0,2*pi); + ellipse_x_r = X0 + a*cos( theta_r ); + ellipse_y_r = Y0 + b*sin( theta_r ); + rotated_ellipse = R * [ellipse_x_r;ellipse_y_r]; + + axis_handle = figure; + imshow(im2double(im) + edge(mask)) + hold on + plot(X0_in, Y0_in, 'rx', 'MarkerSize', 10); + + % draw + hold_state = get( axis_handle,'NextPlot' ); + set( axis_handle,'NextPlot','add' ); + plot( new_ver_line(1,:),new_ver_line(2,:),'r' ); + plot( new_horz_line(1,:),new_horz_line(2,:),'r' ); + plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' ); + set( axis_handle,'NextPlot',hold_state ); + + str = [filename ' ; ellipse fitting']; + + title(str, 'Interpreter', 'none') + + if savefile + export_fig(gcf, [dirResults str '.jpg']); + end %if save + +end %if plotta + +