|
a |
|
b/functions/functions_ellipse/fit_ellipse.m |
|
|
1 |
function ellipse_t = fit_ellipse(x, y, im, filename, mask, dirResults, plotta, savefile) |
|
|
2 |
% |
|
|
3 |
% fit_ellipse - finds the best fit to an ellipse for the given set of points. |
|
|
4 |
% |
|
|
5 |
% Format: ellipse_t = fit_ellipse( x,y,axis_handle ) |
|
|
6 |
% |
|
|
7 |
% Input: x,y - a set of points in 2 column vectors. AT LEAST 5 points are needed ! |
|
|
8 |
% axis_handle - optional. a handle to an axis, at which the estimated ellipse |
|
|
9 |
% will be drawn along with it's axes |
|
|
10 |
% |
|
|
11 |
% Output: ellipse_t - structure that defines the best fit to an ellipse |
|
|
12 |
% a - sub axis (radius) of the X axis of the non-tilt ellipse |
|
|
13 |
% b - sub axis (radius) of the Y axis of the non-tilt ellipse |
|
|
14 |
% phi - orientation in radians of the ellipse (tilt) |
|
|
15 |
% X0 - center at the X axis of the non-tilt ellipse |
|
|
16 |
% Y0 - center at the Y axis of the non-tilt ellipse |
|
|
17 |
% X0_in - center at the X axis of the tilted ellipse |
|
|
18 |
% Y0_in - center at the Y axis of the tilted ellipse |
|
|
19 |
% long_axis - size of the long axis of the ellipse |
|
|
20 |
% short_axis - size of the short axis of the ellipse |
|
|
21 |
% status - status of detection of an ellipse |
|
|
22 |
% |
|
|
23 |
% Note: if an ellipse was not detected (but a parabola or hyperbola), then |
|
|
24 |
% an empty structure is returned |
|
|
25 |
|
|
|
26 |
% ===================================================================================== |
|
|
27 |
% Ellipse Fit using Least Squares criterion |
|
|
28 |
% ===================================================================================== |
|
|
29 |
% We will try to fit the best ellipse to the given measurements. the mathematical |
|
|
30 |
% representation of use will be the CONIC Equation of the Ellipse which is: |
|
|
31 |
% |
|
|
32 |
% Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0 |
|
|
33 |
% |
|
|
34 |
% The fit-estimation method of use is the Least Squares method (without any weights) |
|
|
35 |
% The estimator is extracted from the following equations: |
|
|
36 |
% |
|
|
37 |
% g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f |
|
|
38 |
% |
|
|
39 |
% where: |
|
|
40 |
% A - is the vector of parameters to be estimated (a,b,c,d,e) |
|
|
41 |
% x,y - is a single measurement |
|
|
42 |
% |
|
|
43 |
% We will define the cost function to be: |
|
|
44 |
% |
|
|
45 |
% Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c) |
|
|
46 |
% = (X*A+f_c)'*(X*A+f_c) |
|
|
47 |
% = A'*X'*X*A + 2*f_c'*X*A + N*f^2 |
|
|
48 |
% |
|
|
49 |
% where: |
|
|
50 |
% g_c(x_c,y_c;A) - vector function of ALL the measurements |
|
|
51 |
% each element of g_c() is g(x,y;A) |
|
|
52 |
% X - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ] |
|
|
53 |
% f_c - is actually defined as ones(length(f),1)*f |
|
|
54 |
% |
|
|
55 |
% Derivation of the Cost function with respect to the vector of parameters "A" yields: |
|
|
56 |
% |
|
|
57 |
% A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X) |
|
|
58 |
% |
|
|
59 |
% Which yields the estimator: |
|
|
60 |
% |
|
|
61 |
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
62 |
% | A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X) | |
|
|
63 |
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
64 |
% |
|
|
65 |
% (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on) |
|
|
66 |
% |
|
|
67 |
% NOW, all that is left to do is to extract the parameters from the Conic Equation. |
|
|
68 |
% We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1; |
|
|
69 |
% |
|
|
70 |
% Recall the conic representation of an ellipse: |
|
|
71 |
% |
|
|
72 |
% A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0 |
|
|
73 |
% |
|
|
74 |
% We will check if the ellipse has a tilt (=orientation). The orientation is present |
|
|
75 |
% if the coefficient of the term "x*y" is not zero. If so, we first need to remove the |
|
|
76 |
% tilt of the ellipse. |
|
|
77 |
% |
|
|
78 |
% If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse. |
|
|
79 |
% we will remove the tilt of the ellipse so as to remain with a conic representation of an |
|
|
80 |
% ellipse without a tilt, for which the math is more simple: |
|
|
81 |
% |
|
|
82 |
% Non tilt conic rep.: A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0 |
|
|
83 |
% |
|
|
84 |
% We will remove the orientation using the following substitution: |
|
|
85 |
% |
|
|
86 |
% Replace x with cx+sy and y with -sx+cy such that the conic representation is: |
|
|
87 |
% |
|
|
88 |
% A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0 |
|
|
89 |
% |
|
|
90 |
% where: c = cos(phi) , s = sin(phi) |
|
|
91 |
% |
|
|
92 |
% and simplify... |
|
|
93 |
% |
|
|
94 |
% x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ... |
|
|
95 |
% y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0 |
|
|
96 |
% |
|
|
97 |
% The orientation is easily found by the condition of (B_new=0) which results in: |
|
|
98 |
% |
|
|
99 |
% 2A*cs +(c^2-s^2)B -2Ccs = 0 ==> phi = 1/2 * atan( b/(c-a) ) |
|
|
100 |
% |
|
|
101 |
% Now the constants c=cos(phi) and s=sin(phi) can be found, and from them |
|
|
102 |
% all the other constants A`,C`,D`,E` can be found. |
|
|
103 |
% |
|
|
104 |
% A` = A*c^2 - B*c*s + C*s^2 D` = D*c-E*s |
|
|
105 |
% B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0 E` = D*s+E*c |
|
|
106 |
% C` = A*s^2 + B*c*s + C*c^2 |
|
|
107 |
% |
|
|
108 |
% Next, we want the representation of the non-tilted ellipse to be as: |
|
|
109 |
% |
|
|
110 |
% Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1 |
|
|
111 |
% |
|
|
112 |
% where: (X0,Y0) is the center of the ellipse |
|
|
113 |
% a,b are the ellipse "radiuses" (or sub-axis) |
|
|
114 |
% |
|
|
115 |
% Using a square completion method we will define: |
|
|
116 |
% |
|
|
117 |
% F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`) |
|
|
118 |
% |
|
|
119 |
% Such that: a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 ) |
|
|
120 |
% c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 ) |
|
|
121 |
% |
|
|
122 |
% which yields the transformations: |
|
|
123 |
% |
|
|
124 |
% X0 = -D`/(2*A`) |
|
|
125 |
% Y0 = -E`/(2*C`) |
|
|
126 |
% a = sqrt( abs( F``/A` ) ) |
|
|
127 |
% b = sqrt( abs( F``/C` ) ) |
|
|
128 |
% |
|
|
129 |
% And finally we can define the remaining parameters: |
|
|
130 |
% |
|
|
131 |
% long_axis = 2 * max( a,b ) |
|
|
132 |
% short_axis = 2 * min( a,b ) |
|
|
133 |
% Orientation = phi |
|
|
134 |
% |
|
|
135 |
% |
|
|
136 |
|
|
|
137 |
%Ohad Gal (2019). |
|
|
138 |
%fit_ellipse (https://www.mathworks.com/matlabcentral/fileexchange/3215-fit_ellipse), |
|
|
139 |
%MATLAB Central File Exchange. Retrieved December 17, 2019. |
|
|
140 |
|
|
|
141 |
% initialize |
|
|
142 |
orientation_tolerance = 1e-3; |
|
|
143 |
|
|
|
144 |
% empty warning stack |
|
|
145 |
warning( '' ); |
|
|
146 |
|
|
|
147 |
% prepare vectors, must be column vectors |
|
|
148 |
x = x(:); |
|
|
149 |
y = y(:); |
|
|
150 |
|
|
|
151 |
% remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on). |
|
|
152 |
mean_x = mean(x); |
|
|
153 |
mean_y = mean(y); |
|
|
154 |
x = x-mean_x; |
|
|
155 |
y = y-mean_y; |
|
|
156 |
|
|
|
157 |
% the estimation for the conic equation of the ellipse |
|
|
158 |
X = [x.^2, x.*y, y.^2, x, y ]; |
|
|
159 |
a = sum(X)/(X'*X); |
|
|
160 |
|
|
|
161 |
% check for warnings |
|
|
162 |
if ~isempty( lastwarn ) |
|
|
163 |
disp( 'stopped because of a warning regarding matrix inversion' ); |
|
|
164 |
ellipse_t = []; |
|
|
165 |
return |
|
|
166 |
end |
|
|
167 |
|
|
|
168 |
% extract parameters from the conic equation |
|
|
169 |
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) ); |
|
|
170 |
|
|
|
171 |
% remove the orientation from the ellipse |
|
|
172 |
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance ) |
|
|
173 |
|
|
|
174 |
orientation_rad = 1/2 * atan( b/(c-a) ); |
|
|
175 |
cos_phi = cos( orientation_rad ); |
|
|
176 |
sin_phi = sin( orientation_rad ); |
|
|
177 |
[a,b,c,d,e] = deal(... |
|
|
178 |
a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,... |
|
|
179 |
0,... |
|
|
180 |
a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,... |
|
|
181 |
d*cos_phi - e*sin_phi,... |
|
|
182 |
d*sin_phi + e*cos_phi ); |
|
|
183 |
[mean_x,mean_y] = deal( ... |
|
|
184 |
cos_phi*mean_x - sin_phi*mean_y,... |
|
|
185 |
sin_phi*mean_x + cos_phi*mean_y ); |
|
|
186 |
else |
|
|
187 |
orientation_rad = 0; |
|
|
188 |
cos_phi = cos( orientation_rad ); |
|
|
189 |
sin_phi = sin( orientation_rad ); |
|
|
190 |
end |
|
|
191 |
|
|
|
192 |
% check if conic equation represents an ellipse |
|
|
193 |
test = a*c; |
|
|
194 |
switch (1) |
|
|
195 |
case (test>0), status = ''; |
|
|
196 |
case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' ); |
|
|
197 |
case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' ); |
|
|
198 |
end |
|
|
199 |
|
|
|
200 |
% if we found an ellipse return it's data |
|
|
201 |
if (test>0) |
|
|
202 |
|
|
|
203 |
% make sure coefficients are positive as required |
|
|
204 |
if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end |
|
|
205 |
|
|
|
206 |
% final ellipse parameters |
|
|
207 |
X0 = mean_x - d/2/a; |
|
|
208 |
Y0 = mean_y - e/2/c; |
|
|
209 |
F = 1 + (d^2)/(4*a) + (e^2)/(4*c); |
|
|
210 |
[a,b] = deal( sqrt( F/a ),sqrt( F/c ) ); |
|
|
211 |
long_axis = 2*max(a,b); |
|
|
212 |
short_axis = 2*min(a,b); |
|
|
213 |
|
|
|
214 |
% rotate the axes backwards to find the center point of the original TILTED ellipse |
|
|
215 |
R = [ cos_phi sin_phi; -sin_phi cos_phi ]; |
|
|
216 |
P_in = R * [X0;Y0]; |
|
|
217 |
X0_in = P_in(1); |
|
|
218 |
Y0_in = P_in(2); |
|
|
219 |
|
|
|
220 |
% pack ellipse into a structure |
|
|
221 |
ellipse_t = struct( ... |
|
|
222 |
'a',a,... |
|
|
223 |
'b',b,... |
|
|
224 |
'phi',orientation_rad,... |
|
|
225 |
'X0',X0,... |
|
|
226 |
'Y0',Y0,... |
|
|
227 |
'X0_in',X0_in,... |
|
|
228 |
'Y0_in',Y0_in,... |
|
|
229 |
'long_axis',long_axis,... |
|
|
230 |
'short_axis',short_axis,... |
|
|
231 |
'status','' ); |
|
|
232 |
else |
|
|
233 |
% report an empty structure |
|
|
234 |
ellipse_t = struct( ... |
|
|
235 |
'a',[],... |
|
|
236 |
'b',[],... |
|
|
237 |
'phi',[],... |
|
|
238 |
'X0',[],... |
|
|
239 |
'Y0',[],... |
|
|
240 |
'X0_in',[],... |
|
|
241 |
'Y0_in',[],... |
|
|
242 |
'long_axis',[],... |
|
|
243 |
'short_axis',[],... |
|
|
244 |
'status',status ); |
|
|
245 |
end |
|
|
246 |
|
|
|
247 |
% check if we need to plot an ellipse with it's axes. |
|
|
248 |
if plotta |
|
|
249 |
|
|
|
250 |
% rotation matrix to rotate the axes with respect to an angle phi |
|
|
251 |
R = [ cos_phi sin_phi; -sin_phi cos_phi ]; |
|
|
252 |
|
|
|
253 |
% the axes |
|
|
254 |
ver_line = [ [X0 X0]; Y0+b*[-1 1] ]; |
|
|
255 |
horz_line = [ X0+a*[-1 1]; [Y0 Y0] ]; |
|
|
256 |
new_ver_line = R*ver_line; |
|
|
257 |
new_horz_line = R*horz_line; |
|
|
258 |
|
|
|
259 |
% the ellipse |
|
|
260 |
theta_r = linspace(0,2*pi); |
|
|
261 |
ellipse_x_r = X0 + a*cos( theta_r ); |
|
|
262 |
ellipse_y_r = Y0 + b*sin( theta_r ); |
|
|
263 |
rotated_ellipse = R * [ellipse_x_r;ellipse_y_r]; |
|
|
264 |
|
|
|
265 |
axis_handle = figure; |
|
|
266 |
imshow(im2double(im) + edge(mask)) |
|
|
267 |
hold on |
|
|
268 |
plot(X0_in, Y0_in, 'rx', 'MarkerSize', 10); |
|
|
269 |
|
|
|
270 |
% draw |
|
|
271 |
hold_state = get( axis_handle,'NextPlot' ); |
|
|
272 |
set( axis_handle,'NextPlot','add' ); |
|
|
273 |
plot( new_ver_line(1,:),new_ver_line(2,:),'r' ); |
|
|
274 |
plot( new_horz_line(1,:),new_horz_line(2,:),'r' ); |
|
|
275 |
plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' ); |
|
|
276 |
set( axis_handle,'NextPlot',hold_state ); |
|
|
277 |
|
|
|
278 |
str = [filename ' ; ellipse fitting']; |
|
|
279 |
|
|
|
280 |
title(str, 'Interpreter', 'none') |
|
|
281 |
|
|
|
282 |
if savefile |
|
|
283 |
export_fig(gcf, [dirResults str '.jpg']); |
|
|
284 |
end %if save |
|
|
285 |
|
|
|
286 |
end %if plotta |
|
|
287 |
|
|
|
288 |
|