|
a |
|
b/functions/functions_Classifiers/fastEuclideanDistance.m |
|
|
1 |
function d = fastEuclideanDistance(a,b) |
|
|
2 |
% DISTANCE - computes Euclidean distance matrix |
|
|
3 |
% |
|
|
4 |
% E = distance(A,B) |
|
|
5 |
% |
|
|
6 |
% A - (DxM) matrix |
|
|
7 |
% B - (DxN) matrix |
|
|
8 |
% |
|
|
9 |
% Returns: |
|
|
10 |
% E - (MxN) Euclidean distances between vectors in A and B |
|
|
11 |
% |
|
|
12 |
% |
|
|
13 |
% Description : |
|
|
14 |
% This fully vectorized (VERY FAST!) m-file computes the |
|
|
15 |
% Euclidean distance between two vectors by: |
|
|
16 |
% |
|
|
17 |
% ||A-B|| = sqrt ( ||A||^2 + ||B||^2 - 2*A.B ) |
|
|
18 |
% |
|
|
19 |
% Example : |
|
|
20 |
% A = rand(400,100); B = rand(400,200); |
|
|
21 |
% d = distance(A,B); |
|
|
22 |
|
|
|
23 |
% Author : Roland Bunschoten |
|
|
24 |
% University of Amsterdam |
|
|
25 |
% Intelligent Autonomous Systems (IAS) group |
|
|
26 |
% Kruislaan 403 1098 SJ Amsterdam |
|
|
27 |
% tel.(+31)20-5257524 |
|
|
28 |
% bunschot@wins.uva.nl |
|
|
29 |
% Last Rev : Oct 29 16:35:48 MET DST 1999 |
|
|
30 |
% Tested : PC Matlab v5.2 and Solaris Matlab v5.3 |
|
|
31 |
% Thanx : Nikos Vlassis |
|
|
32 |
|
|
|
33 |
% Copyright notice: You are free to modify, extend and distribute |
|
|
34 |
% this code granted that the author of the original code is |
|
|
35 |
% mentioned as the original author of the code. |
|
|
36 |
|
|
|
37 |
if (nargin ~= 2) |
|
|
38 |
error('Not enough input arguments'); |
|
|
39 |
end |
|
|
40 |
|
|
|
41 |
if (size(a,1) ~= size(b,1)) |
|
|
42 |
error('A and B should be of same dimensionality'); |
|
|
43 |
end |
|
|
44 |
|
|
|
45 |
aa=sum(a.*a,1); bb=sum(b.*b,1); ab=a'*b; |
|
|
46 |
d = sqrt(abs(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab)); |