a b/functions/functions_Classifiers/computekNNClassificationPerformanceTrainTest.m
1
function [TestPCAOutput, distMatrix] = computekNNClassificationPerformanceTrainTest(ftrain_all, ftestPCA_all, TrnPCALabels, TestPCALabels, sizeTest, stepPrint, numCoresKnn, param)
2
3
4
%Distance matrix
5
distMatrix = full(fastEuclideanDistance(ftestPCA_all, ftrain_all));
6
7
% whos ftrain_all ftestPCA_all distMatrix
8
9
%modo parallelo per knn (k = 1) classification
10
%leave-one-out
11
%we use knn_neighbors + 1 because otherwise it would find the same vector
12
%in this way we choose the second neighbor (which is the actual first neighbor)
13
%(we use the entire feature vector for all samples)
14
%loop on test samples
15
%init
16
TestPCAOutput = zeros(sizeTest, 1);
17
18
% start_pool(numCoresKnn);
19
20
% parfor g = 1 : sizeTest
21
for g = 1 : sizeTest
22
    
23
    %get id of current worker
24
    %t = getCurrentTask();
25
    
26
    %display progress
27
    if mod(g, stepPrint) == 0
28
        %fprintf(1, ['\t\tCore ' num2str(t.ID) ': ' num2str(g) ' / ' num2str(sizeTest) '\n'])
29
        fprintf(1, ['\t\t' num2str(g) ' / ' num2str(sizeTest) '\n'])
30
    end %if mod(i, 100) == 0
31
    
32
    %we can re-use the distance matrix
33
    distV = distMatrix(g, :);
34
    sortV = sort(distV, 'ascend');
35
    %minD = sortV(2); %the first will be 0
36
    minD = sortV(1); %the first will be 0
37
    idx = find(distV == minD);
38
    idx = idx(1); %se dovessero essercene altri a pari merito
39
    
40
    TestPCAOutput(g) = idx;
41
    
42
end %for g
43
44
%mettiamo le labels al posto degli indici trovati
45
for g = 1 : sizeTest
46
    %TestPCAOutput(g) = TestPCALabels(TestPCAOutput(g));
47
    TestPCAOutput(g) = TrnPCALabels(TestPCAOutput(g));
48
end %for g
49
50