a b/functions/functions_Classifiers/computekNNClassificationPerformance.m
1
function [TestPCAOutput, distMatrix] = computekNNClassificationPerformance(ftestPCA_all, TestPCALabels, sizeTest, stepPrint, numCoresKnn, param)
2
3
4
%Distance matrix
5
if strcmp(param.matchDistance, 'chisq')
6
    distMatrix = sc_pdist2(ftestPCA_all, ftestPCA_all, 'chisq');
7
elseif strcmp(param.matchDistance, 'euclidean')
8
    %fast Euclidean distance
9
    distMatrix = full(fastEuclideanDistance(ftestPCA_all, ftestPCA_all));
10
else %if strcmp
11
    distMatrix = pdist2(ftestPCA_all', ftestPCA_all', param.matchDistance);
12
end %if strcmp
13
14
%modo parallelo per knn (k = 1) classification
15
%leave-one-out
16
%we use knn_neighbors + 1 because otherwise it would find the same vector
17
%in this way we choose the second neighbor (which is the actual first neighbor)
18
%(we use the entire feature vector for all samples)
19
%loop on test samples
20
%init
21
TestPCAOutput = zeros(sizeTest, 1);
22
23
%parallel vars init
24
% ftestPCA_all = parallel.pool.Constant(ftestPCA_all);
25
knnDistancePar = param.knnDistance;
26
matchDistance = param.matchDistance;
27
numkPar = param.knn_neighbors;
28
29
% start_pool(numCoresKnn);
30
31
% parfor g = 1 : sizeTest
32
for g = 1 : sizeTest
33
    
34
    %get id of current worker
35
    t = getCurrentTask();
36
    
37
    %display progress
38
    if mod(g, stepPrint) == 0
39
        %fprintf(1, ['\t\tCore ' num2str(t.ID) ': ' num2str(g) ' / ' num2str(sizeTest) '\n'])
40
        fprintf(1, ['\t\t' num2str(g) ' / ' num2str(sizeTest) '\n'])
41
    end %if mod(i, 100) == 0
42
    
43
    if strcmp(knnDistancePar, matchDistance)
44
        %we can re-use the distance matrix
45
        distV = distMatrix(g, :);
46
        sortV = sort(distV, 'ascend');
47
        minD = sortV(2); %the first will be 0
48
        idx = find(distV == minD);
49
        idx = idx(1); %se dovessero essercene altri a pari merito  
50
        
51
    else %if strcmp(param.knnDistance, param.matchDistance)
52
        %we use + 1
53
        %idx = knnsearch(ftestPCA_all.Value', ftestPCA_all.Value(:, g)', 'K', numkPar + 1, 'Distance', knnDistancePar);
54
        idx = knnsearch(ftestPCA_all', ftestPCA_all(:, g)', 'K', numkPar + 1, 'Distance', knnDistancePar);
55
        idx(idx == g)  = []; %il pių vicino č il vettore stesso, lo togliamo
56
        idx = idx(1); %se dovessero essercene altri a pari merito
57
    end %if strcmp(param.knnDistance, param.matchDistance)
58
    
59
    TestPCAOutput(g) = idx;
60
    
61
end %for g
62
63
%mettiamo le labels al posto degli indici trovati
64
for g = 1 : sizeTest
65
    TestPCAOutput(g) = TestPCALabels(TestPCAOutput(g));
66
end %for g
67
68