|
a |
|
b/functions/computeErrorsFromCM.m |
|
|
1 |
function [errorStruct] = computeErrorsFromCM(C_knn) |
|
|
2 |
|
|
|
3 |
%classification error |
|
|
4 |
numberMisClassified = getNumberMisclassifiedSamples(C_knn); |
|
|
5 |
errorStruct.err_knn_percent = numberMisClassified / sum(C_knn(:)); |
|
|
6 |
%TP |
|
|
7 |
errorStruct.TP = C_knn(2,2); |
|
|
8 |
%TN |
|
|
9 |
errorStruct.TN = C_knn(1,1); |
|
|
10 |
%FP |
|
|
11 |
errorStruct.FP = C_knn(1,2); |
|
|
12 |
%FN |
|
|
13 |
errorStruct.FN = C_knn(2,1); |
|
|
14 |
%sensitivity |
|
|
15 |
errorStruct.sens = errorStruct.TP / (errorStruct.TP + errorStruct.FN); |
|
|
16 |
%specificity |
|
|
17 |
errorStruct.spec = errorStruct.TN / (errorStruct.TN + errorStruct.FP); |
|
|
18 |
%TPR |
|
|
19 |
errorStruct.TPR = errorStruct.TP / sum(C_knn(:)); |
|
|
20 |
%TNR |
|
|
21 |
errorStruct.TNR = errorStruct.TN / sum(C_knn(:)); |
|
|
22 |
%FPR |
|
|
23 |
errorStruct.FPR = errorStruct.FP / sum(C_knn(:)); |
|
|
24 |
%FNR |
|
|
25 |
errorStruct.FNR = errorStruct.FN / sum(C_knn(:)); |
|
|
26 |
%accuracy |
|
|
27 |
errorStruct.accuracy_knn = (sum(C_knn(:)) - numberMisClassified) / sum(C_knn(:)); |