a b/functions/computeClassificationPerformanceTrainTest.m
1
function errorStruct = computeClassificationPerformanceTrainTest(numFeatures, sizeTest, ftrain_all, ftest_all, TrnLabels, TestLabels, stepPrint, numCoresKnn, fidLogs, param)
2
3
%1-NN classifier (Nearest Neighbor)
4
fprintf_pers(fidLogs, '\t\tClassification... \n');
5
%display
6
fprintf_pers(fidLogs, ['\t\tNumber of features: ' num2str(numFeatures) '\n']);
7
fprintf_pers(fidLogs, ['\t\tNumber of samples: ' num2str(sizeTest) '\n']);
8
%time
9
tic
10
% [TestOutput, distMatrixTest] = computekNNClassificationPerformance(ftest_all, TestLabels, sizeTest, stepPrint, numCoresKnn, param);
11
[TestOutput, distMatrixTest] = computekNNClassificationPerformanceTrainTest(ftrain_all, ftest_all, TrnLabels, TestLabels, sizeTest, stepPrint, numCoresKnn, param);
12
%Time for feature extraction
13
timeClass = toc;
14
fprintf_pers(fidLogs, ['\t\tTime for classification: ' num2str(timeClass) ' s\n']);
15
%Confusion matrix
16
C_knn = confusionmat(TestLabels, TestOutput);
17
18
%pause
19
20
%Error metrics
21
errorStruct = computeErrorsFromCM(C_knn);
22
errorStruct.distMatrixTest = distMatrixTest;
23
errorStruct.rank5 = [];
24
25
26