|
a |
|
b/functions/computeClassificationPerformance.m |
|
|
1 |
function errorStruct = computeClassificationPerformance(numFeatures, sizeTest, ftest_all, TestLabels, stepPrint, numCoresKnn, fidLogs, param) |
|
|
2 |
|
|
|
3 |
%1-NN classifier (Nearest Neighbor) |
|
|
4 |
fprintf_pers(fidLogs, '\t\tClassification... \n'); |
|
|
5 |
%display |
|
|
6 |
fprintf_pers(fidLogs, ['\t\tNumber of features: ' num2str(numFeatures) '\n']); |
|
|
7 |
fprintf_pers(fidLogs, ['\t\tNumber of samples: ' num2str(sizeTest) '\n']); |
|
|
8 |
%time |
|
|
9 |
tic |
|
|
10 |
[TestOutput, distMatrixTest] = computekNNClassificationPerformance(ftest_all, TestLabels, sizeTest, stepPrint, numCoresKnn, param); |
|
|
11 |
%Time for feature extraction |
|
|
12 |
timeClass = toc; |
|
|
13 |
fprintf_pers(fidLogs, ['\t\tTime for classification: ' num2str(timeClass) ' s\n']); |
|
|
14 |
%Confusion matrix |
|
|
15 |
C_knn = confusionmat(TestLabels, TestOutput); |
|
|
16 |
|
|
|
17 |
%pause |
|
|
18 |
|
|
|
19 |
%Error metrics |
|
|
20 |
errorStruct = computeErrorsFromCM(C_knn); |
|
|
21 |
errorStruct.distMatrixTest = distMatrixTest; |
|
|
22 |
errorStruct.rank5 = []; |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
|