Switch to unified view

a b/functions/computeClassPerformanceFineTuneCNN.m
1
function [errorStruct] = computeClassPerformanceFineTuneCNN(imagesCell, Labels, folder, inputSize, netTransfer, fidLogs)
2
3
% imdsTest = imageDatastore(folder, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
4
5
im_temp = imagesCell{1};
6
imsizeOrig = size(im_temp);
7
imArray = zeros(imsizeOrig(1), imsizeOrig(2), imsizeOrig(3), numel(imagesCell));
8
for ind_im = 1 : numel(imagesCell)
9
    imArray(:,:,:,ind_im) = imagesCell{ind_im};
10
end %for ind_im
11
12
% imdsTestAugm = augmentedImageDatastore(inputSize(1:2), imdsTest);
13
imdsTestAugm = augmentedImageDatastore(inputSize(1:2), imArray, categorical(Labels)');
14
15
tic
16
%[TestOutput, scores] = classify(netTransfer, imArrayTest);
17
[TestOutput, scores] = classify(netTransfer, imdsTestAugm, 'MiniBatchSize', 10);
18
19
% scores
20
% TestOutput
21
% double(imdsTest.Labels)
22
% oneHotLabels = onehot(double(imdsTest.Labels));
23
% correlationProc = computeCorrelation(scores, oneHotLabels)
24
25
%cast
26
%TestOutput = double(TestOutput)-1;
27
timeClass = toc;
28
fprintf_pers(fidLogs, ['\t\tTime for classification: ' num2str(timeClass) ' s\n']);
29
%Confusion matrix
30
%C_knn = confusionmat(TestLabels, TestOutput);
31
C_knn = confusionmat(categorical(Labels), TestOutput);
32
33
%Error metrics
34
errorStruct = computeErrorsFromCM(C_knn);
35