|
a |
|
b/README.md |
|
|
1 |
# CNN-ALL |
|
|
2 |
|
|
|
3 |
Matlab source code for the paper: |
|
|
4 |
|
|
|
5 |
A. Genovese, M. S. Hosseini, V. Piuri, K. N. Plataniotis, and F. Scotti, |
|
|
6 |
"Acute Lymphoblastic Leukemia detection based on adaptive unsharpening and Deep Learning", |
|
|
7 |
in Proc. of the 2021 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2021), |
|
|
8 |
Toronto, ON, Canada, June 6-11, 2021, pp. 1205-1209. |
|
|
9 |
ISBN: 978-1-7281-7605-5. [DOI: 10.1109/ICASSP39728.2021.9414362] |
|
|
10 |
|
|
|
11 |
Paper: |
|
|
12 |
|
|
|
13 |
https://ieeexplore.ieee.org/document/9414362 |
|
|
14 |
|
|
|
15 |
Project page: |
|
|
16 |
|
|
|
17 |
https://iebil.di.unimi.it/cnnALL/index.htm |
|
|
18 |
|
|
|
19 |
Outline: |
|
|
20 |
 |
|
|
21 |
|
|
|
22 |
Citation: |
|
|
23 |
|
|
|
24 |
@InProceedings {icassp21, |
|
|
25 |
author = {A. Genovese and M. S. Hosseini and V. Piuri and K. N. Plataniotis and F. Scotti}, |
|
|
26 |
booktitle = {Proc. of the 2021 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2021)}, |
|
|
27 |
title = {Acute Lymphoblastic Leukemia detection based on adaptive unsharpening and Deep Learning}, |
|
|
28 |
address = {Toronto, ON, Canada}, |
|
|
29 |
pages = {1205-1209}, |
|
|
30 |
month = {June}, |
|
|
31 |
day = {6-11}, |
|
|
32 |
year = {2021}, |
|
|
33 |
note = {978-1-7281-7605-5} |
|
|
34 |
} |
|
|
35 |
|
|
|
36 |
Main files: |
|
|
37 |
|
|
|
38 |
- launch_VARPCANet: main file |
|
|
39 |
|
|
|
40 |
Required files: |
|
|
41 |
|
|
|
42 |
- ./imgs/orig/ALL-IDB/ALL_IDB2/img: Database of images, with filenames in the format "Im001_1.tif", |
|
|
43 |
the images can be downloaded at: https://homes.di.unimi.it/scotti/all/ |
|
|
44 |
|
|
|
45 |
Part of the code uses the Matlab source code of the paper: |
|
|
46 |
|
|
|
47 |
T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng and Y. Ma, |
|
|
48 |
"PCANet: A Simple Deep Learning Baseline for Image Classification?," |
|
|
49 |
in IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5017-5032, Dec. 2015. |
|
|
50 |
DOI: 10.1109/TIP.2015.2475625 |
|
|
51 |
http://mx.nthu.edu.tw/~tsunghan/Source%20codes.html |
|
|
52 |
|
|
|
53 |
The 1Shot-MaxPol library: |
|
|
54 |
|
|
|
55 |
Mahdi S. Hosseini and Konstantinos N. Plataniotis |
|
|
56 |
"Convolutional Deblurring for Natural Imaging," |
|
|
57 |
IEEE Transactions on Image Processing, 2019. |
|
|
58 |
https://github.com/mahdihosseini/1Shot-MaxPol |
|
|
59 |
|
|
|
60 |
The FQPath library: |
|
|
61 |
|
|
|
62 |
Hosseini, Mahdi S., Jasper AZ Brawley-Hayes, Yueyang Zhang, Lyndon Chan, Konstantinos N. Plataniotis, and Savvas Damaskinos |
|
|
63 |
"Focus Quality Assessment of High-Throughput Whole Slide Imaging in Digital Pathology." |
|
|
64 |
IEEE Transactions on Medical Imaging (2019) |
|
|
65 |
https://github.com/mahdihosseini/FQPath |
|
|
66 |
|
|
|
67 |
The Fast N-D Grayscale Image Segmentation library: |
|
|
68 |
|
|
|
69 |
Fast N-D Grayscale Image Segmenation With c- or Fuzzy c-Means |
|
|
70 |
https://github.com/AntonSemechko/Fast-Fuzzy-C-Means-Segmentation |
|
|
71 |
|
|
|
72 |
The Stain Deconvolution library: |
|
|
73 |
|
|
|
74 |
SCD_FastICA |
|
|
75 |
https://github.com/lisatostrams/SCD_FastICA |
|
|
76 |
|
|
|
77 |
and the Colour Image Normalization library: |
|
|
78 |
|
|
|
79 |
Finlayson, G., Schiele, B., & Crowley, J. (1998). |
|
|
80 |
Comprehensive Colour Image Normalization. |
|
|
81 |
Computer Vision—ECCV’98, 1406, 475–490. |
|
|
82 |
https://doi.org/10.1007/BFb0055655 |
|
|
83 |
https://it.mathworks.com/matlabcentral/fileexchange/60360-comprehensive-colour-normalization |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
|
88 |
|