396 lines (328 with data), 13.7 kB
---
title: "Figure 1"
author: Tobias Roider
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`"
output:
rmdformats::readthedown:
editor_options:
chunk_output_type: console
---
```{r options, include=FALSE, warning = FALSE}
library(knitr)
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE,
dpi = 100, cache = FALSE, warning = FALSE)
opts_knit$set(root.dir = "../")
options(bitmapType = "cairo")
```
# Read data, functions and packages
```{r read data}
source("R/ReadPackages.R")
source("R/Functions.R")
source("R/ReadData.R")
source("R/ThemesColors.R")
source("R/Helpers.R")
```
# UMAP plot
```{r umap plot}
# Fine tuning for labels
median_umap <- df_comb %>%
group_by(IdentI) %>%
summarise(Median1=median(wnnUMAP_1), Median2=median(wnnUMAP_2)) %>%
mutate(Code=ifelse(IdentI %in% c(15, 18, 11, 6, 4), T, F)) %>%
mutate(Median2=ifelse(IdentI %in% 6, Median2+0.5, Median2)) %>%
mutate(Median2=ifelse(IdentI %in% 9, Median2+0.75, Median2)) %>%
mutate(Median1=ifelse(IdentI %in% 9, Median1-1, Median1)) %>%
mutate(Median2=ifelse(IdentI %in% 14, Median2+0.6, Median2)) %>%
mutate(Median1=ifelse(IdentI %in% 14, Median1-1.75, Median1)) %>%
mutate(IdentI=factor(IdentI, levels = cluster_order)) %>%
left_join(., data.frame(IdentI=factor(cluster_order), IdentI_label=seq(1:14)))
# Set origin for 'frameless' umap
ori <- c(-8.25,-8.5)
l <- 3
off <- 1
plot_umap <- df_comb %>%
ggplot(aes(x=wnnUMAP_1, y=wnnUMAP_2, fill=as.factor(IdentI)))+
ggrastr::geom_point_rast(size=0.35, stroke=0, shape=21, raster.dpi = 200, alpha=0.75)+
geom_text(data=median_umap, aes(x=Median1, color=Code, y=Median2, label=paste0("C", IdentI_label)),
size=2.5, fontface="bold")+
scale_color_manual(values = c("black", "grey96"), guide="none")+
scale_fill_manual(values = colors_umap_cl, limits=factor(cluster_order), labels=unlist(labels_cl))+
scale_x_continuous(limits = c(ori[1],10), expand = c(0,0))+
scale_y_continuous(limits = c(ori[2],10), expand = c(0,0))+
annotation_custom(grob = linesGrob(gp=gpar(fill="black", lex=0.25),
arrow = arrow(ends = "last", type="closed", length=unit(0.15, "cm"))),
xmin = ori[1]+off, xmax = ori[1]+off+l, ymin=ori[2]+off, ymax=ori[2]+off)+
annotation_custom(grob = linesGrob(gp=gpar(fill="black", lex=0.25),
arrow = arrow(ends = "last", type="closed", length=unit(0.15, "cm"))),
ymin = ori[2]+off, ymax = ori[2]+off+l, xmin=ori[1]+off, xmax=ori[1]+off)+
annotation_custom(grob = textGrob(label = "wnnUMAP-1", gp = gpar(cex=0.6)),
xmin = ori[1]+off+l/2, xmax = ori[1]+off+l/2, ymin=ori[2]+off/3, ymax=ori[2]+off/3)+
annotation_custom(grob = textGrob(label = "wnnUMAP-2", gp = gpar(cex=0.6), rot = 90),
xmin=ori[1]+off/3, xmax=ori[1]+off/3, ymin=ori[2]+off+l/2, ymax=ori[2]+off+l/2)+
coord_fixed(clip = "off")+
theme_void()+
theme(legend.position = "none")
plot_umap
#ggsave(plot_umap, filename = "Figure1_p1.pdf", width = 8.25, height = 7.25, units = "cm")
```
# Gene expression
## Selected genes
```{r genes}
genes_selected <-
c("MKI67",
"CCR7",
"KLF2",
"TCF7",
"TOX",
"TOX2",
"ASCL2",
"FOXP3",
"IKZF3",
"GZMA",
"GZMK",
"CCL5",
"NKG7")
```
## Plot
```{r gene expression}
DefaultAssay(Combined_T) <- "integratedRNA"
perc_expr <-
FetchData(Combined_T, slot = "counts", vars = c("IdentI", paste0("rna_", genes_selected))) %>%
mutate(IdentI=as.factor(IdentI)) %>%
mutate_if(.predicate = is.numeric, .funs = ~ifelse(isZero(.), 1, 0)) %>%
pivot_longer(cols = 2:ncol(.), names_to = "Gene") %>%
group_by(IdentI, Gene) %>%
count(value) %>%
mutate(Prop=n/sum(n)) %>%
filter(value==0) %>%
select(-value, -n) %>%
mutate(Gene=substr(Gene, 5, nchar(.)))
DefaultAssay(Combined_T) <- "integratedRNA"
plot_genex <-
FetchData(Combined_T, slot = "data", vars = c("IdentI", paste0(genes_selected))) %>%
mutate(IdentI=factor(IdentI, levels = rev(cluster_order))) %>%
group_by(IdentI) %>%
summarise_all(mean) %>%
pivot_longer(cols = 2:ncol(.), names_to = "Gene") %>%
group_by(Gene) %>%
mutate(value=(value-min(value))/(max(value)-min(value))) %>%
left_join(., perc_expr) %>%
ggplot(aes(x=Gene, y=IdentI, size=100*Prop, fill=value))+
geom_point(shape=21, stroke=0.1, color="grey45")+
scale_size_continuous(range=c(0, 3), name="% pos. cells", limits=c(0, 100))+
scale_fill_gradientn(name="Expression", colours = brewer.pal(5, "BuGn"), limits=c(0,1))+
scale_y_discrete(limits=factor(rev(cluster_order)), labels=rev(unlist(labels_cl)))+
scale_x_discrete(limits=genes_selected)+
geom_hline(yintercept = c(1.5, 5.5, 9.5, 10.5, 13.5), linetype="solid", size=0.25, alpha=0.1)+
ggtitle("RNA level")+
coord_cartesian(clip = "off")+
theme_bw()+
mytheme_1+
theme(axis.title = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size=7),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
plot.margin = unit(c(0.25,0.35,0,2), "cm"))
lines <- c(1, 5, 9, 10, 13, 14)
for(i in 1:length(cluster_order)) {
plot_genex <- plot_genex+
annotation_custom(grob = rectGrob(gp = gpar(fill=colors_umap_cl[as.character(rev(cluster_order)[i])], lex=1, col="white")),
ymin = seq(0.5, length(cluster_order)-0.5, 1)[i],
ymax = seq(1.5, length(cluster_order)+0.5, 1)[i],
xmin = 0, xmax = -1.5)+
annotation_custom(grob = textGrob(label = paste0("C", c(14:1)[i]), gp = gpar(cex=0.6, col=ifelse(i %in% c(6,7,11,14), "white", "black"))),
ymin = seq(0.5, length(cluster_order)-0.5, 1)[i],
ymax = seq(1.5, length(cluster_order)+0.5, 1)[i],
xmin = 0, xmax = -1.5)
}
for(i in 1:length(lines)) {
plot_genex <- plot_genex+
annotation_custom(grob = textGrob(label = rev(labels_celltypes_expr)[[i]], rot = 0, hjust = 1, gp = gpar(cex=0.6)),
ymin = c(0,lines)[i]+0.5,
ymax = c(lines)[i]+0.5,
xmin = -1.65, xmax = -1.65)+
annotation_custom(grob = linesGrob(gp = gpar(col="white", lex=3)),
ymin = c(0,lines)[i]+0.5,
ymax = c(0,lines)[i]+0.5,
xmin = -0.01, xmax = -1.5)
}
plot_genex <- plot_genex+labs(tag = "B")+
theme(plot.tag.position = c(-0.25,1))
```
# Protein expression
## Selected proteins
```{r proteins}
proteins_selected <-
c("CD4"="CD4",
"CD8a"="CD8a",
"CD45RA"="CD45RA",
"CD45RO"="CD45RO",
"CD95"="CD95",
"CD62L"="CD62L",
"CD127"="CD127",
"CD69"="CD69",
"CD38"="CD38",
"CD25"="CD25",
"ICOS"="CD278",
"CXCR5"="CD185",
"CD31"="CD31",
"KLRG1"="KLRG1",
"CD244"="CD244",
"PD1"="CD279",
"TIM3"="CD366"
)
```
## Plot
```{r protein expression}
plot_protex <-
left_join(percentageADT, meanADT) %>%
filter(Epitope %in% proteins_selected) %>%
ggplot(aes(x=Epitope, y=IdentI, size=100*Prop, fill=Expression))+
geom_point(shape=21, stroke=0.1, color="grey45")+
geom_hline(yintercept = c(1.5, 5.5, 9.5, 10.5, 13.5), linetype="solid", size=0.25, alpha=0.1)+
scale_size_continuous(range=c(0, 3), name="% pos. cells", limits=c(0, 100))+
scale_fill_gradientn(name="Expression", colours = brewer.pal(5, "BuGn"), limits=c(0,1))+
scale_y_discrete(limits=factor(rev(cluster_order)), labels=rev(unlist(labels_cl)))+
scale_x_discrete(limits=proteins_selected, labels=names(proteins_selected))+
ggtitle("Protein level")+
coord_cartesian(clip = "off")+
theme_bw()+
mytheme_1+
theme(axis.title = element_blank(),
legend.position = "right",
axis.text.x = element_text(angle = 45, hjust = 1, size=7),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
legend.text = element_text(size = 7, color="black"),
legend.title = element_text(size = 7, color="black", vjust = 0.8),
legend.key.height = unit(0.3, "cm"),
legend.key.width = unit(0.3, "cm"),
legend.box.spacing = unit(0.1, "cm"),
plot.margin = unit(c(0.25,0,0,0.15), "cm"),
plot.tag.position = c(-0.025,1))+
labs(tag = "C")
```
# Assemble plot
```{r assemble plot, fig.height=4}
plot_genex+plot_protex+plot_layout(widths = c(1, 1.15))
#ggsave(filename = "Figure1_p2.pdf", width = 15, height = 7.8, units = "cm")
```
# TF activity
## Selected TFs
```{r tfs}
tfs_selected <- c("TCF7"="tfactivity_TCF7-E",
"FOXP3"="tfactivity_FOXP3-E",
"ASCL2"="tfactivity_ASCL2-E",
"KLF2"="tfactivity_KLF2-E")
```
## Plot
```{r tf activity, fig.height=4}
df_tfs <-
FetchData(Combined_T, vars = c("Barcode_full", unname(tfs_selected))) %>%
left_join(df_comb %>% select(IdentI, Barcode_full, CellType), .) %>%
pivot_longer(cols =4:ncol(.)) %>%
mutate(name=gsub(name, pattern = "tfactivity_|-E", replacement = "")) %>%
mutate(name=factor(name, levels = names(tfs_selected))) %>%
group_by(name, IdentI) %>%
summarise(Mean=mean(value, na.rm=T)) %>%
group_by(name) %>%
mutate(Mean=2*((Mean-min(Mean))/(max(Mean)-min(Mean)))-1)
plot_tfact <-
ggplot(df_tfs, aes(y=as.character(IdentI), x=name, fill=Mean))+
geom_tile()+
scale_fill_gradientn(name="TF activity", colours = colorRampPalette(colors = c("#762a83", "#f7f7f7", "#1b7837"))(100))+
geom_vline(xintercept = seq(1.5, 4.5, 1), color="white", size=0.25)+
geom_hline(yintercept = seq(1.5, 14.5, 1), color="white", size=0.25)+
scale_y_discrete(limits=rev(factor(cluster_order)), expand = c(0,0))+
scale_x_discrete(expand = c(0,0))+
ggtitle("TF activity")+
coord_fixed(clip = "off")+
theme_bw()+
mytheme_1+
theme(axis.title = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size=7),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
panel.border = element_rect(size=0.25),
plot.background = element_rect(fill = NA, color=NA),
legend.position = "right",
legend.text = element_text(size = 7, color="black"),
legend.key.height = unit(0.3, "cm"),
legend.key.width = unit(0.3, "cm"),
legend.box.spacing = unit(0.1, "cm"),
plot.margin = unit(c(0.25,0,0,0.65), "cm"),
plot.tag.position = c(-0.2,1))+
labs(tag = "D")
lines <- c(1, 5, 9, 10, 13, 14)
for(i in 1:length(cluster_order)) {
plot_tfact <- plot_tfact+
annotation_custom(grob = rectGrob(gp = gpar(fill=colors_umap_cl[as.character(rev(cluster_order)[i])], lex=1, col="white")),
ymin = seq(0.5, length(cluster_order)-0.5, 1)[i],
ymax = seq(1.5, length(cluster_order)+0.5, 1)[i],
xmin = 0, xmax = -1.5)+
annotation_custom(grob = textGrob(label = paste0("C", c(14:1)[i]), gp = gpar(cex=0.6, col=ifelse(i %in% c(6,7,11,14), "white", "black"))),
ymin = seq(0.5, length(cluster_order)-0.5, 1)[i],
ymax = seq(1.5, length(cluster_order)+0.5, 1)[i],
xmin = 0, xmax = -1.5)
}
for(i in 1:length(lines)) {
plot_tfact <- plot_tfact+
annotation_custom(grob = linesGrob(gp = gpar(col="white", lex=3)),
ymin = c(0,lines)[i]+0.5,
ymax = c(0,lines)[i]+0.5,
xmin = -0.01, xmax = -1.5)
}
plot_tfact
#ggsave(plot_tfact, filename = "Figure1_p3.pdf", width = 5, height = 7.35, units = "cm")
```
# Dendrogram
```{r dendrogram}
# Dendrogramm CITEseq
data <- data.frame(
level1="_Tcells",
level2=c("_'T'[Pr]",
rep("_'T'[H]",3),
"_'T'[FH]",
rep("_'T'[REG]",4),
rep("_'T'[TOX]",4),
"_'T'[DN]"),
level3=c("_'T'[Pr]",
"TH_'CD4'^'+'*' Naive'",
"TH_'CM'[1]",
"TH_'CM'[2]",
"_'T'[FH]",
"TREG_'CM'[1]",
"TREG_'CM'[2]",
"TREG_'EM'[1]",
"TREG_'EM'[2]",
"TTOX_'CD8'^'+'*' Naive'",
"TTOX_'EM'[1]",
"TTOX_'EM'[2]",
"TTOX_'EM'[3]",
"_'T'[DN]")
)
dim <- 0.5
edges_level1_2 <- data %>% select(level1, level2) %>% unique %>% rename(from=level1, to=level2)
edges_level2_3 <- data %>% select(level2, level3) %>% unique %>% rename(from=level2, to=level3)
edge_list=rbind(edges_level1_2, edges_level2_3)
vert <- data.frame(
name=unique(c(data$level1, data$level2, data$level3))) %>%
mutate(cluster=as.character(c(NA, 14, 'TH', 6, 'TREG', "TTOX", 19, 1, 2, 9, 8, 13, 15, 11, 12, 3, 16, 5))) %>%
mutate(label=strsplit(name, split = "_") %>% sapply(., "[[", 2)) %>%
mutate(alpha=c(0,1,1,1,1,1,dim,1,dim,dim,dim,dim,dim,dim,1,dim,dim,1))
mygraph_cite <- graph_from_data_frame( edge_list ,vertices = vert)
plot_dendrogramm <- ggraph(mygraph_cite, layout = 'tree', circular = FALSE)+
geom_edge_diagonal(strength = 1.4, edge_width=0.25)+
geom_node_label(aes(label=label, color=cluster),
parse = T, nudge_y=-0.1, label.padding = unit(units = "cm", 0.2),
size=2.75, label.size = 0, label.r = unit(units = "cm", 0))+
scale_color_manual(values = colors_umap_cl)+
theme_void()+
theme(legend.position = "none")
plot_dendrogramm
#ggsave(plot_dendrogramm, filename = "Figure1_p4.pdf", device = "pdf", width = 17.5, height = 3.5, units = "cm")
```
# Session info
```{r session info}
sessionInfo()
```