# CITE-seq data
df_comb <- FetchData(Combined_T, vars = c("wnnUMAP_1", "wnnUMAP_2", colnames(Combined_T@meta.data))) %>%
mutate(IdentI=factor (IdentI, levels = cluster_order)) %>%
left_join(., df_celltypes, by = "IdentI") %>%
mutate(CellType=factor(CellType, levels=rev(celltypes), labels = rev(labels_celltypes_pars)))
# 5'scRNA and scTCR data
DFtotal_5prime <-
lapply(sobjs_T_5prime, function(x){
FetchData(x, vars = c("PatientID", "umapRNA_1", "umapRNA_2", "refUMAP_1", "refUMAP_2",
"predicted.celltype", "predicted.celltype.score", "CD4", "CD8A"))
}) %>%
bind_rows() %>%
rownames_to_column("Barcode_full") %>%
add_entity() %>%
rename(IdentI=predicted.celltype) %>%
left_join(., DF_TCRrep, by=c("Barcode_full", "PatientID"))
# ADT data from CITE-seq data
df_ADT <- FetchData(Combined_T, slot = "scale.data",
vars = c("Barcode_full",
paste0("integratedadt_", rownames(Combined_T@assays$integratedADT)))) %>%
left_join(df_comb %>% select(IdentI, Barcode_full, Entity, PatientID), ., by = "Barcode_full") %>%
pivot_longer(cols = 6:ncol(.), names_to = "Epitope", values_to = "Expression") %>%
mutate(Epitope=gsub(Epitope, pattern = "integratedadt_.", replacement = "")) %>%
na.omit()
df_ADTdenoised <- FetchData(Combined_T, slot = "data",
vars = c("Barcode_full",
paste0("denoisedprotein_", rownames(Combined_T@assays$denoisedProtein)))) %>%
left_join(df_comb %>% select(IdentI, Barcode_full, Entity, PatientID), ., by = "Barcode_full") %>%
pivot_longer(cols = 6:ncol(.), names_to = "Epitope", values_to = "Expression") %>%
mutate(Epitope=gsub(Epitope, pattern = "denoisedprotein_", replacement = "")) %>%
left_join(., thresh, by="Epitope") %>%
na.omit()
percentageADT <-
df_ADTdenoised %>%
mutate(Pos=Expression>value) %>%
add_prop(vars = c("Pos", "Epitope", "IdentI", "PatientID"), group.vars = c(2:4)) %>%
filter(Pos==T) %>%
select(-Pos) %>%
group_by(Epitope, IdentI) %>%
summarise(Prop=mean(Prop), `.groups`="drop")
meanADT <-
df_ADT %>% group_by(IdentI, Epitope) %>%
summarise(Expression=mean(Expression), `.groups`="drop") %>%
group_by(Epitope) %>%
mutate(Expression=(Expression-min(Expression))/(max(Expression)-min(Expression)))
# Align FACS and CITE-seq data
df_freq <-
df_comb %>%
add_prop(vars = c("IdentI", "PatientID"), group.vars = 2) %>%
pivot_wider(names_from = "IdentI", values_from = "Prop", values_fill = 0) %>%
mutate(TREG= `8`+`11`+`13`+`15`,
TFH=`6`,
`TREGCM1`=`8`,
`TREGCM2`=`13`,
`TREGEM1`=`15`,
`TREGEM2`=`11`,
`TREG/CM1`=`8`/TREG,
`TREG/CM2`=`13`/TREG,
`TREG/EM1`=`15`/TREG,
`TREG/EM2`=`11`/TREG,
THNaive=`1`,
TTOXNaive=`12`,
TDN=`19`,
TTOX=`5`+`3`+`16`,
TPR=`14`,
`TTOXEM1`=`3`,
`TTOXEM2`=`16`,
`TTOXEM3`=`5`,
`TTOX/EM1`=(`3`)/TTOX,
`TTOX/EM2`=(`16`)/TTOX,
`TTOX/EM3`=(`5`)/TTOX,
THCM1=`2`,
THCM2=`9`
) %>%
pivot_longer(cols = 2:ncol(.), names_to = "Population", values_to = "RNA") %>%
mutate(RNA=100*RNA)