Diff of /figures/Figure7.Rmd [000000] .. [9905a0]

Switch to unified view

a b/figures/Figure7.Rmd
1
---
2
title: "Figure 7"
3
author: Tobias Roider
4
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`"
5
output: 
6
  rmdformats::readthedown:
7
  
8
editor_options: 
9
  chunk_output_type: console
10
---
11
12
```{r options, include=FALSE, warning = FALSE}
13
14
library(knitr)
15
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, 
16
               dpi = 100, cache = FALSE, warning = FALSE)
17
opts_knit$set(root.dir = "../")
18
options(bitmapType = "cairo")
19
20
```
21
22
# Read data, functions and packages
23
```{r read data}
24
25
source("R/ReadPackages.R")
26
source("R/Functions.R")
27
source("R/ReadData.R")
28
source("R/ThemesColors.R")
29
source("R/Helpers.R")
30
31
```
32
33
# Representative rLN image
34
```{r create rLN image, fig.height=3}
35
36
plots_codex <- list()
37
dpi <- 400
38
39
rLN <- codex_annotation %>% filter(unique_region== "191_4reg001") %>% 
40
  filter(x>500, x<7500) %>% 
41
  filter(y>500, y<7500) %>% 
42
  mutate(Merged_all_simple=ifelse(Merged_final %in% c("Granulo", "Macro", "DC"), "Myeloid", Merged_final)) %>% 
43
  mutate(Merged_all_simple=ifelse(Merged_all_simple %in% c("MC", "NKT", "PC", "NK"), "Other", Merged_all_simple)) %>% 
44
  filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2)
45
46
image_rln <- ggplot()+
47
  geom_point_rast(data=rLN %>% filter(Merged_all_simple=="B"), aes(x=x,y=y), shape=21, size=0.25, stroke=0, alpha=1, raster.dpi =dpi, 
48
                  color=colors_codex[["B"]], fill=colors_codex[["B"]])+
49
  geom_point_rast(data=rLN %>% filter(Merged_all_simple!="B"), aes(x=x,y=y, fill=Merged_all_simple, color=Merged_all_simple), 
50
                  shape=21, size=0.25, stroke=0, alpha=1, raster.dpi=dpi)+
51
  scale_color_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name=NULL)+
52
  scale_fill_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name=NULL)+
53
  guides(fill=guide_legend(nrow = 6, override.aes = list(size=1.5, color="white", stroke=0.1)))+
54
  ggtitle(unique(rLN$Entity))+
55
  coord_fixed()+
56
  theme_void()+
57
  theme(legend.position = "right",
58
        legend.box.background = element_rect(fill = "black"),
59
        legend.box.margin = unit(units = "cm", c(0, 0, 0, -0.25)),
60
        legend.spacing.x = unit("cm", x = 0.1),
61
        legend.key.height = unit("cm", x = 0.34),
62
        legend.key.width = unit("cm", x = 0.2),
63
        legend.text = element_text(color="white", size=7),
64
        plot.title = element_text(color="white", hjust=0.1, size=8, 
65
                                  margin = unit(units = "cm", c(0,0,-0.6,0)), face = "bold"),
66
        plot.margin = unit(units = "cm", c(0.35, 0.1, 0.1, 0.1)),
67
        plot.background = element_rect(fill = "black", color="black"),
68
        panel.background = element_rect(fill = "black", color="black"))
69
70
image_rln
71
72
#ggsave(width = 7, height = 4.75, units = "cm", filename = "Figure7_p1.pdf")
73
74
```
75
76
## Mini B-cell plot
77
```{r mini B cell plot, fig.height=1, eval=FALSE, include=FALSE}
78
79
ggplot(rLN %>% filter(Merged_all_simple=="B"), aes(x=x,y=y))+
80
  geom_point_rast(raster.dpi = dpi, alpha=0.5, shape=".", color="grey75")+
81
  guides(color=guide_legend(override.aes = list(size=2,alpha=0.75)))+
82
  scale_y_continuous(expand = c(0,0))+#, limits = c(min(rLN$y), max(rLN$y)+edgeFt))+
83
  scale_x_continuous(expand = c(0,0))+#, limits = c(min(rLN$x), max(rLN$x)+edgeFt))+
84
  coord_fixed()+
85
  mytheme_codex+
86
  theme(plot.margin = unit(units = "cm", c(0,0,0,0)))
87
88
#ggsave(width = 5, height = 5, units = "cm", filename = "Figure7_mini.pdf")
89
90
```
91
92
# Neighborhood (NH) plots
93
## Load NH analysis and PCA
94
```{r neighbourhood analysis}
95
96
# Read results from neighborhood analysis
97
# Please run file: analysis/NeighborhoodAnalysis.Rmd
98
load("output/Neighborhood_results.RData")
99
100
# Add codex annotation
101
codex_annotation <- left_join(codex_annotation, nn_classes, by="unique_cell_id")
102
codex_annotation
103
104
```
105
106
## In situ NH plot of rLN
107
```{r overview nn, fig.height=3.5}
108
109
plot_overview <- codex_annotation %>% 
110
  filter(unique_region=="191_4reg001") %>% 
111
  filter(x>500, x<7500) %>% 
112
  filter(y>500, y<7500) %>% 
113
  filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2) %>% 
114
  ggplot()+
115
  ggrastr::geom_point_rast(aes(x=x,y=y,color=Region, fill=Region), shape=21, size=0.25, stroke=0, alpha=1, raster.dpi =300)+
116
  scale_color_manual(values = colors_nn)+
117
  scale_fill_manual(values = colors_nn)+
118
  guides(color=guide_legend(override.aes = list(size=3)))+
119
  coord_fixed()+
120
  theme_void()+
121
  theme(legend.position = "none",
122
        legend.title = element_blank(),
123
        legend.text = element_text(size=6),
124
        legend.spacing.x = unit("cm", x = 0.1),
125
        legend.key.height = unit("cm", x = 0.4),
126
        legend.key.width = unit("cm", x = 0.2))
127
128
plot_overview
129
130
#ggsave(width = 5.3, height = 5.3, units = "cm", filename = "Figure7_p2.pdf")
131
132
```
133
134
## PCA
135
```{r pca nn, fig.height=3.5, fig.width=3.5}
136
137
df_loadings <- pca_codex$rotation[c("Stromal cells", "Macro", "B", "TFH", "FDC", "TTOX", "CD4T", "Treg"), c("PC1", "PC2")] %>% 
138
  data.frame() %>% mutate(x=0, y=0) %>% 
139
  rownames_to_column("Ident")
140
141
scaling <- 7.5
142
143
plot_pca <- pca_codex$x %>% 
144
  data.frame() %>% 
145
  rownames_to_column("unique_cell_id") %>% 
146
  left_join(., nn_classes) %>% 
147
  filter(unique_cell_id %in% rLN$unique_cell_id) %>%
148
  sample_frac(0.3) %>% 
149
  ggplot(aes(x=PC1, y=PC2))+
150
  ggrastr::geom_point_rast(size=0.5, alpha=1, shape=21, stroke=0, aes(color=Region, fill=Region), raster.dpi = 400)+
151
  geom_segment(data=df_loadings, aes(x=0, xend=7.5*PC1, y=0, yend=7.5*PC2), 
152
               arrow = arrow(type = "closed",  length = unit(units = "cm", 0.1)), size=0.25)+
153
  #ggrepel::geom_text_repel(data=df_loadings, aes(x=7.5*PC1, y=7.5*PC2, label=Ident), size=2.5, segment.size=0.25)+
154
  guides(color=guide_legend(override.aes = list(size=3, alpha=1)))+
155
  scale_color_manual(values = colors_nn)+
156
  scale_fill_manual(values = colors_nn)+
157
  ylim(-7.5,5)+
158
  mytheme_1+
159
  #coord_fixed(clip = "off")+
160
  theme(legend.position = "none")
161
162
plot_pca
163
164
#ggsave(width = 5, height = 5.1, units = "cm", filename = "Figure7_p3.pdf")
165
166
```
167
168
## NH composition
169
```{r, include=FALSE}
170
171
df_nh <- 
172
  codex_annotation %>% 
173
  add_prop(vars = c("Region", "Merged_final"), group.vars = 1) %>% 
174
  group_by(Merged_final) %>% 
175
  dplyr::mutate(Prop=scale(Prop)[,1]) 
176
  
177
pheat_nh <- df_nh %>% 
178
  pivot_wider(names_from = "Merged_final", values_from = "Prop") %>% 
179
  column_to_rownames("Region") %>% 
180
  pheatmap::pheatmap(silent = T)
181
182
plot_nn_rLN <- ggplot(df_nh, aes(x=Merged_final, y=Region, fill=Prop))+
183
  geom_tile()+
184
  scale_fill_gradientn(colours = colorRampPalette(colors = c("#762a83", "#f7f7f7", "#1b7837"))(100), limits=c(-3, 3),
185
                       name="Scaled\nAbundance", breaks=c(-3,-1.5,0,1.5,3))+
186
  scale_x_discrete(limits=pheat_nh$tree_col$labels[pheat_nh$tree_col$order], expand = c(0,0),
187
                   labels=c("Plasma cells", "Mast cells", "Stromal cells", "Granulocytes", "NK cells", expression('T'[Pr]), 
188
                            expression('T'[REG]), expression('Memory T'[TOX]), expression('CD8'^'+'~'naive'), "DC", 
189
                            expression('CD4'^'+'~'naive'), expression('Memory T'[H]), "NK T-cells", "Macrophages",
190
                            expression('Exh. T'[TOX]), "B cells", "FDC", expression('T'[FH])))+
191
  scale_y_discrete(limits=rev(pheat_nh$tree_row$labels[pheat_nh$tree_row$order]), expand = c(0,0), name="Neighborhoods")+
192
  geom_vline(xintercept = seq(1.5, 17.5, 1), color="white", size=0.25)+
193
  geom_hline(yintercept = seq(1.5, 14.5, 1), color="white", size=0.25)+
194
  mytheme_1+
195
  coord_cartesian(clip = "off")+
196
  theme_bw()+
197
  mytheme_1+
198
  theme(legend.position = "right",
199
    axis.title.x = element_blank(),
200
        axis.title.y = element_text(vjust = 11),
201
        axis.text.x = element_text(angle=45, hjust=1, size=7),
202
        legend.text = element_text(size = 7, color="black"),
203
        legend.title = element_text(size = 7, color="black", vjust = 0.8),
204
        legend.key.height = unit(0.3, "cm"),
205
        legend.key.width = unit(0.3, "cm"),
206
        legend.box.spacing = unit(0.1, "cm"),
207
        axis.text.y = element_blank(),
208
        axis.ticks.y = element_blank(),
209
        plot.tag = element_text(margin = unit(c(0,0.45,0,0), units = "cm")),
210
        plot.margin = unit(c(0,0.25,0,0.25), "cm"))+
211
  labs(tag = "E")
212
213
order_y <- rev(pheat_nh$tree_row$labels[pheat_nh$tree_row$order])
214
215
for(i in 1:length(pheat_nh$tree_row$order)) {
216
  
217
  plot_nn_rLN <- plot_nn_rLN+
218
    annotation_custom(grob = rectGrob(gp = gpar( fill=colors_nn[order_y][i], lex=1, col="white")), 
219
                      ymin = seq(0.5, length(colors_nn)-0.5, 1)[i], 
220
                      ymax = seq(1.5, length(colors_nn)+0.5, 1)[i],
221
                      xmin = 0, xmax = -1.1)+
222
    annotation_custom(grob = textGrob(label = paste0("N", order_y)[i], gp = gpar(cex=0.6)), 
223
                      ymin = seq(0.5, length(colors_nn)-0.5, 1)[i], 
224
                      ymax = seq(1.5, length(colors_nn)+0.5, 1)[i],
225
                      xmin = 0, xmax = -1.1)
226
227
}
228
229
```
230
231
## NH proportions
232
```{r neighborhood composition, fig.height=3}
233
234
roi <- c(4,2,1,7)
235
236
df_freq_nh <- codex_annotation %>% 
237
  left_join(., nn_classes) %>% 
238
  add_prop(vars = c("Entity", "Region", "unique_region"), group.vars = 3) %>% 
239
  fill_zeros(names_from = "Region", values_from = "Prop") 
240
241
pvalues <- df_freq_nh %>% 
242
  compare_means(data=., formula = Prop ~ Entity, ref.group = "rLN", 
243
                group.by = "Region", p.adjust.method = "BH") %>% 
244
  filter(p.adj<0.07) %>% 
245
  mutate(p.adj_s=format(p.adj, scientific = TRUE, digits=1)) %>% 
246
  mutate(p.adj_f=case_when(p.adj > 0.01 ~ as.character(round(p.adj, 2)),
247
                           p.adj==0.01 ~ "0.01",
248
                           p.adj < 0.01 ~ p.adj_s),
249
         Entity=group2) %>% 
250
  filter(!is.na(p.adj)) %>% 
251
  mutate(Entity=factor(Entity, levels = c("rLN", "DLBCL", "MCL", "FL", "MZL"))) %>% 
252
  filter(Region %in% roi) %>% 
253
  mutate(Region=factor(Region, levels = roi)) %>% 
254
  arrange(Region,Entity) %>% 
255
  mutate(Y=c(0.68,0.1,0.35,0.55,0.77,0.09,0.20,0.09)) %>% 
256
  mutate(Region_nn=paste0("N", Region)) %>% 
257
  mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) 
258
259
# Points to modify facet scales
260
d <- data.frame(Entity="rLN", Region=roi, Y=c(0.7, 0.55, 0.79, 0.35)) %>% 
261
  mutate(Region=factor(Region, levels = roi)) %>% 
262
  mutate(Region_nn=paste0("N", Region)) %>% 
263
  mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) 
264
265
df_medianLines <- df_freq_nh %>%
266
  filter(Entity=="rLN") %>% 
267
  group_by(Region) %>% 
268
  dplyr::summarise(MedianProp=median(Prop)) %>% 
269
  filter(Region %in% roi) %>% 
270
  mutate(Region=factor(Region, levels = roi)) %>% 
271
  mutate(Region_nn=paste0("N", Region)) %>% 
272
  mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) 
273
274
plot_freq_nn <- df_freq_nh %>% 
275
  filter(Region %in% roi) %>% 
276
  mutate(Region_nn=paste0("N", Region)) %>% 
277
  mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) %>% 
278
  mutate(Region=factor(Region, levels = roi)) %>% 
279
  ggplot(aes(x=Entity, y=Prop)) +
280
  geom_hline(data=df_medianLines, aes(yintercept=MedianProp),
281
             size=0.25, linetype="dashed", color="grey60")+
282
  geom_boxplot(width=0.5, outlier.alpha = 0, size=0.25)+
283
  ggbeeswarm::geom_beeswarm(size=0.8, shape=21, stroke=0.1, cex = 1.75, aes(fill=Region))+
284
  geom_text(data=pvalues, inherit.aes = F, aes(y=Y, x=Entity, label=p.adj_f), size=2.5)+
285
  geom_point(data = d, alpha=0, aes(x=Entity, y=Y))+
286
  scale_fill_manual(values = colors_nn)+
287
  scale_x_discrete(limits=c("rLN", "DLBCL", "MCL", "FL", "MZL"))+
288
  facet_wrap(~Region_nn, strip.position = "right", scales = "free_y")+
289
  ylab("% of total area")+
290
  mytheme_1+
291
  theme(strip.text.y = element_text(angle = 0, size=7, margin = unit(units = "cm", c(0.075,0.075,0.075,0.075))),
292
        axis.text.x = element_text(angle=45, hjust=1),
293
        axis.title.x = element_blank(),
294
        plot.margin = unit(c(0,0,0,0.1), "cm"))+
295
  labs(tag = "F")
296
297
g <- ggplot_gtable(ggplot_build(plot_freq_nn))
298
299
g$grobs[[22]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["2"]
300
g$grobs[[23]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["7"]
301
g$grobs[[24]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["4"]
302
g$grobs[[25]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["1"]
303
304
plot_nn_rLN+wrap_ggplot_grob(g)+plot_layout(widths = c(1.6,1.2))
305
306
ggsave(width = 18.3, height = 6, units = "cm", filename = "Figure7_p4.pdf")
307
308
```
309
310
# B-NHL examples
311
## Cells colored by NH
312
```{r, fig.height=3}
313
314
regions_nn <- c("191_2reg006", "191_3reg003", "191_4reg002")
315
names(regions_nn) <- c("MCL", "FL", "DLBCL")
316
plot_nn <- list()
317
318
for(r in regions_nn){
319
  df_tmp <- codex_annotation %>% 
320
    filter(unique_region==r) %>% 
321
    filter(x>500, x<7500) %>% 
322
    filter(y>500, y<7500) %>% 
323
    filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2)
324
    
325
plot_nn[[r]] <- df_tmp %>% 
326
    ggplot()+
327
    geom_point(data = data.frame(x=min(df_tmp$x)+2500, y=min(df_tmp$y)+2500), stroke=2,
328
                             aes(x=x,y=y), shape=21, color="white", fill="white", size=72.5)+
329
    ggrastr::geom_point_rast(aes(x=x,y=y,color=Region, fill=Region), shape=21, size=0.25, stroke=0, alpha=1, raster.dpi = 400)+
330
    scale_color_manual(values = colors_nn)+
331
    scale_fill_manual(values = colors_nn)+
332
    guides(color=guide_legend(override.aes = list(size=3)))+
333
    coord_fixed(clip = "off")+
334
    theme_void()+
335
    theme(legend.position = "none",
336
          legend.title = element_blank(),
337
          plot.background = element_rect(fill=NA, color=NA),
338
          legend.text = element_text(size=6),
339
          legend.spacing.x = unit("cm", x = 0.1),
340
          legend.key.height = unit("cm", x = 0.4),
341
          legend.key.width = unit("cm", x = 0.2))
342
  
343
#ggsave(plot_nn[[r]], width = 6, height = 6, units = "cm", filename = paste("Figure7_", r, ".pdf"))
344
}
345
346
plot_nn
347
348
```
349
350
## Cells colored by subset
351
```{r, fig.height=3}
352
353
regions_nn <- c("191_2reg006", "191_3reg003", "191_4reg002")
354
names(regions_nn) <- c("MCL", "FL", "DLBCL")
355
df_images <- list()
356
images <- list()
357
358
margins <- c(0.1, 0, 0.4, -0.5)
359
dpi <- 600
360
361
for(r in 1:3){
362
363
df_images[[r]] <- codex_annotation %>% 
364
  filter(unique_region==regions_nn[r]) %>% 
365
  filter(x>500, x<7500) %>% 
366
  filter(y>500, y<7500) %>% 
367
  mutate(Merged_all_simple=ifelse(Merged_final %in% c("Granulo", "Macro", "DC"), "Myeloid", Merged_final)) %>% 
368
  mutate(Merged_all_simple=ifelse(Merged_all_simple %in% c("PC", "MC", "NK", "NKT"), "Other", Merged_all_simple)) %>% 
369
  filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2)
370
371
images[[r]] <- 
372
  ggplot()+
373
  geom_point_rast(data=df_images[[r]] %>% filter(Merged_all_simple=="B"), aes(x=x,y=y), 
374
                  shape=21, size=0.25, stroke=0, alpha=1, raster.dpi =dpi, 
375
                  color=colors_codex[["B"]], fill=colors_codex[["B"]])+
376
  geom_point_rast(data=df_images[[r]] %>% filter(Merged_all_simple!="B"), 
377
                  aes(x=x,y=y, fill=Merged_all_simple, color=Merged_all_simple), 
378
                  shape=21, size=0.25, stroke=0, alpha=1, raster.dpi=dpi)+
379
  scale_color_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name="Cell type")+
380
  scale_fill_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name="Cell type")+
381
  ggtitle(unique(df_images[[r]]$Entity))+
382
  coord_fixed()+
383
  theme_void()+
384
  theme(legend.position = "none",
385
        plot.title = element_text(color="white", hjust=0.1, size=10, 
386
                                  margin = unit(units = "cm", c(0,0,-1,0)), face = "bold"),
387
        plot.margin = unit(units = "cm", margins),
388
        panel.background = element_rect(fill = "black", color="black"),
389
        plot.background =  element_rect(fill = "black", color="black"))
390
391
}
392
393
#images
394
395
emptyplot <- ggplot()+
396
  geom_point_rast(data=df_images[[1]] %>% filter(Merged_final=="BC"), aes(x=x,y=y), raster.dpi = dpi, shape=".",
397
                  color=colors_codex[["B"]])+
398
  coord_fixed()+
399
  mytheme_codex+
400
  theme(panel.background = element_rect(fill = "black", color="black"),
401
        plot.background =  element_rect(fill = "black", color="black"))
402
403
p_full <- images[[3]]+emptyplot+images[[1]]+emptyplot+images[[2]]+emptyplot+plot_layout(widths = c(1,0.1,1,0.1,1,0.3))
404
p_full
405
406
#ggsave(p_full, width = 22.5, height = 6, units = "cm", filename = "Figure7_mini.pdf")
407
408
```
409
410
## Legend
411
```{r, fig.height=1}
412
413
plot.legend <- images[[r]]+
414
 guides(fill=guide_legend(nrow = 1, override.aes = list(size=1.75, color="white", stroke=0.25)))+
415
 guides(color=guide_legend(nrow = 1, override.aes = list(size=1.75, color="white", stroke=0.25)))+
416
 theme(legend.position = "bottom",
417
       legend.title = element_blank(),
418
        legend.box.background = element_rect(fill = "black"),
419
        legend.box.margin = unit(units = "cm", c(0, 0, 0, 0)),
420
        legend.spacing.x = unit("cm", x = 0.1),
421
        legend.key.height = unit("cm", x = 0.34),
422
        legend.key.width = unit("cm", x = 0.16),
423
        plot.margin = unit(units = "cm", c(0,0,0,0)),
424
        plot.background = element_rect(fill = "black", color="black"),
425
        panel.background = element_rect(fill = "black", color="black"),
426
        legend.text = element_text(color="white", size=6.5))
427
  
428
as_ggplot(get_legend(plot.legend))
429
#ggsave(width = 19, height = 1, units = "cm", filename = "Figure7_legend.pdf")
430
431
```
432
433
# Closest cells to B-cells
434
```{r fig.height=2.2}
435
436
codex_freq <- codex_annotation %>% 
437
  add_prop(vars = c("unique_region", "Merged_final"), group.vars = 1)
438
439
nn <- run_NNanalysis(data = codex_annotation, regions = unique(codex_annotation$unique_region), 
440
                     plan_session = "multisession", 
441
                     add.prop=FALSE,
442
                     n_workers = 10, 
443
                     nn = 1)
444
445
nn_sum <- 
446
  nn %>% select(-name) %>% 
447
  left_join(codex_annotation %>% select(unique_cell_id, unique_region)) %>% 
448
  left_join(codex_annotation %>% select(unique_cell_id, Ident_center=Merged_final)) %>% 
449
  filter(Ident_center=="B", ) %>% 
450
  add_prop(vars = c("unique_region", "Merged_final"), group.vars = 1) %>% 
451
  mutate(Prop=100*Prop) %>% 
452
  left_join(., codex_annotation %>% select(unique_region, Entity) %>% distinct)
453
  
454
455
art_max <- c(20, 14, 11, 12)
456
names(art_max) <- c("rLN", "DLBCL", "MCL", "FL")
457
plot_nn <- list()
458
459
for(e in names(art_max)){
460
  
461
  selected <- 
462
    nn_sum %>% filter(Entity==e) %>% 
463
    group_by(Merged_final) %>% 
464
    summarise(Mean=mean(Prop), SEM=sd(Prop)/sqrt(length(Prop))) %>% 
465
    top_n(Mean, n = 10) %>% 
466
    mutate(code=Merged_final=="FDC") %>% 
467
    mutate(SEM=ifelse(Mean>art_max[e], NA, SEM)) %>% 
468
    mutate(Mean_new=ifelse(Mean>art_max[e], art_max[e], Mean)) 
469
  
470
  order_ <- selected %>% 
471
    arrange(desc(Mean_new)) %>% 
472
    pull(Merged_final)
473
    
474
  mean_pat <- nn_sum %>% filter(Entity==e) %>% 
475
    left_join(codex_annotation %>% select(PatientID, unique_region) %>% distinct) %>% 
476
    group_by(PatientID, Merged_final) %>% 
477
    summarise(Mean_pat=mean(Prop))
478
       
479
 plot_nn[[e]] <- 
480
    selected %>% 
481
    ggplot(aes(x=reorder(Merged_final, -Mean_new), y=Mean_new, fill=Merged_final, color=code))+
482
    geom_errorbar(aes(ymin=Mean_new, ymax=Mean_new+SEM), width=0.2, color="black", size=0.25)+
483
    geom_bar(stat = "identity", size=0.5, width=0.5, fill="white", color="white")+
484
    geom_bar(stat = "identity", size=0.25, width=0.5, alpha=0.6)+
485
    ggbeeswarm::geom_beeswarm(data=mean_pat, inherit.aes = F, aes(x=Merged_final, y=Mean_pat),
486
               color="black", stroke=0, size=0.65, alpha=0.5, cex=1.75)+
487
    annotation_custom(grob = textGrob(label = e, just = "right", x = 0.92, y=0.9, gp = gpar(cex=0.6)))+
488
    geom_segment(inherit.aes = F, 
489
                 aes(x=1, xend=1, y=1.02*Mean_new[1], yend=1.14*Mean_new[1]), 
490
                 color="black", size=0.15,
491
                 arrow = arrow(type = "closed", length = unit(units = "cm", 0.1)))+
492
    geom_text(aes(x=2.2, y=1.08*Mean_new[1], label=round(Mean[1],1)), 
493
              check_overlap = T, size=2.5, color="black")+
494
    scale_color_manual(values = c("white", "black"), limits=c(F, T))+
495
    scale_fill_manual(values = colors_codex_exp)+
496
    scale_x_discrete(limits=order_, labels=unlist(labels_codex_exp))+
497
    scale_y_continuous(name = "% of cells closest\nto B-cells", limits=c(0,1.15*art_max[e]))+
498
    mytheme_1+
499
    theme(legend.position = "none",
500
          axis.text.x = element_text(angle=45, hjust=1, size=7),
501
          plot.background = element_rect(fill = NA, colour = NA),
502
          panel.background = element_rect(fill = NA, colour = NA),
503
          plot.margin = unit(c(0,0.1,0,0), "cm"),
504
          axis.title.x = element_blank())
505
  
506
  if(e!="rLN") {
507
    plot_nn[[e]] <- plot_nn[[e]]+
508
      theme(axis.title.y = element_blank())}
509
}
510
511
plot_nn$rLN+labs(tag = "G")+plot_nn$DLBCL+
512
  plot_nn$MCL+plot_nn$FL+
513
  plot_layout(nrow = 1)
514
515
#ggsave(width = 18, height = 4.75, units = "cm", filename = "Figure7_p5.pdf")
516
517
```
518
519
# Session info
520
```{r}
521
522
sessionInfo()
523
524
```