--- a +++ b/figures/Figure7.Rmd @@ -0,0 +1,524 @@ +--- +title: "Figure 7" +author: Tobias Roider +date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" +output: + rmdformats::readthedown: + +editor_options: + chunk_output_type: console +--- + +```{r options, include=FALSE, warning = FALSE} + +library(knitr) +opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, + dpi = 100, cache = FALSE, warning = FALSE) +opts_knit$set(root.dir = "../") +options(bitmapType = "cairo") + +``` + +# Read data, functions and packages +```{r read data} + +source("R/ReadPackages.R") +source("R/Functions.R") +source("R/ReadData.R") +source("R/ThemesColors.R") +source("R/Helpers.R") + +``` + +# Representative rLN image +```{r create rLN image, fig.height=3} + +plots_codex <- list() +dpi <- 400 + +rLN <- codex_annotation %>% filter(unique_region== "191_4reg001") %>% + filter(x>500, x<7500) %>% + filter(y>500, y<7500) %>% + mutate(Merged_all_simple=ifelse(Merged_final %in% c("Granulo", "Macro", "DC"), "Myeloid", Merged_final)) %>% + mutate(Merged_all_simple=ifelse(Merged_all_simple %in% c("MC", "NKT", "PC", "NK"), "Other", Merged_all_simple)) %>% + filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2) + +image_rln <- ggplot()+ + geom_point_rast(data=rLN %>% filter(Merged_all_simple=="B"), aes(x=x,y=y), shape=21, size=0.25, stroke=0, alpha=1, raster.dpi =dpi, + color=colors_codex[["B"]], fill=colors_codex[["B"]])+ + geom_point_rast(data=rLN %>% filter(Merged_all_simple!="B"), aes(x=x,y=y, fill=Merged_all_simple, color=Merged_all_simple), + shape=21, size=0.25, stroke=0, alpha=1, raster.dpi=dpi)+ + scale_color_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name=NULL)+ + scale_fill_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name=NULL)+ + guides(fill=guide_legend(nrow = 6, override.aes = list(size=1.5, color="white", stroke=0.1)))+ + ggtitle(unique(rLN$Entity))+ + coord_fixed()+ + theme_void()+ + theme(legend.position = "right", + legend.box.background = element_rect(fill = "black"), + legend.box.margin = unit(units = "cm", c(0, 0, 0, -0.25)), + legend.spacing.x = unit("cm", x = 0.1), + legend.key.height = unit("cm", x = 0.34), + legend.key.width = unit("cm", x = 0.2), + legend.text = element_text(color="white", size=7), + plot.title = element_text(color="white", hjust=0.1, size=8, + margin = unit(units = "cm", c(0,0,-0.6,0)), face = "bold"), + plot.margin = unit(units = "cm", c(0.35, 0.1, 0.1, 0.1)), + plot.background = element_rect(fill = "black", color="black"), + panel.background = element_rect(fill = "black", color="black")) + +image_rln + +#ggsave(width = 7, height = 4.75, units = "cm", filename = "Figure7_p1.pdf") + +``` + +## Mini B-cell plot +```{r mini B cell plot, fig.height=1, eval=FALSE, include=FALSE} + +ggplot(rLN %>% filter(Merged_all_simple=="B"), aes(x=x,y=y))+ + geom_point_rast(raster.dpi = dpi, alpha=0.5, shape=".", color="grey75")+ + guides(color=guide_legend(override.aes = list(size=2,alpha=0.75)))+ + scale_y_continuous(expand = c(0,0))+#, limits = c(min(rLN$y), max(rLN$y)+edgeFt))+ + scale_x_continuous(expand = c(0,0))+#, limits = c(min(rLN$x), max(rLN$x)+edgeFt))+ + coord_fixed()+ + mytheme_codex+ + theme(plot.margin = unit(units = "cm", c(0,0,0,0))) + +#ggsave(width = 5, height = 5, units = "cm", filename = "Figure7_mini.pdf") + +``` + +# Neighborhood (NH) plots +## Load NH analysis and PCA +```{r neighbourhood analysis} + +# Read results from neighborhood analysis +# Please run file: analysis/NeighborhoodAnalysis.Rmd +load("output/Neighborhood_results.RData") + +# Add codex annotation +codex_annotation <- left_join(codex_annotation, nn_classes, by="unique_cell_id") +codex_annotation + +``` + +## In situ NH plot of rLN +```{r overview nn, fig.height=3.5} + +plot_overview <- codex_annotation %>% + filter(unique_region=="191_4reg001") %>% + filter(x>500, x<7500) %>% + filter(y>500, y<7500) %>% + filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2) %>% + ggplot()+ + ggrastr::geom_point_rast(aes(x=x,y=y,color=Region, fill=Region), shape=21, size=0.25, stroke=0, alpha=1, raster.dpi =300)+ + scale_color_manual(values = colors_nn)+ + scale_fill_manual(values = colors_nn)+ + guides(color=guide_legend(override.aes = list(size=3)))+ + coord_fixed()+ + theme_void()+ + theme(legend.position = "none", + legend.title = element_blank(), + legend.text = element_text(size=6), + legend.spacing.x = unit("cm", x = 0.1), + legend.key.height = unit("cm", x = 0.4), + legend.key.width = unit("cm", x = 0.2)) + +plot_overview + +#ggsave(width = 5.3, height = 5.3, units = "cm", filename = "Figure7_p2.pdf") + +``` + +## PCA +```{r pca nn, fig.height=3.5, fig.width=3.5} + +df_loadings <- pca_codex$rotation[c("Stromal cells", "Macro", "B", "TFH", "FDC", "TTOX", "CD4T", "Treg"), c("PC1", "PC2")] %>% + data.frame() %>% mutate(x=0, y=0) %>% + rownames_to_column("Ident") + +scaling <- 7.5 + +plot_pca <- pca_codex$x %>% + data.frame() %>% + rownames_to_column("unique_cell_id") %>% + left_join(., nn_classes) %>% + filter(unique_cell_id %in% rLN$unique_cell_id) %>% + sample_frac(0.3) %>% + ggplot(aes(x=PC1, y=PC2))+ + ggrastr::geom_point_rast(size=0.5, alpha=1, shape=21, stroke=0, aes(color=Region, fill=Region), raster.dpi = 400)+ + geom_segment(data=df_loadings, aes(x=0, xend=7.5*PC1, y=0, yend=7.5*PC2), + arrow = arrow(type = "closed", length = unit(units = "cm", 0.1)), size=0.25)+ + #ggrepel::geom_text_repel(data=df_loadings, aes(x=7.5*PC1, y=7.5*PC2, label=Ident), size=2.5, segment.size=0.25)+ + guides(color=guide_legend(override.aes = list(size=3, alpha=1)))+ + scale_color_manual(values = colors_nn)+ + scale_fill_manual(values = colors_nn)+ + ylim(-7.5,5)+ + mytheme_1+ + #coord_fixed(clip = "off")+ + theme(legend.position = "none") + +plot_pca + +#ggsave(width = 5, height = 5.1, units = "cm", filename = "Figure7_p3.pdf") + +``` + +## NH composition +```{r, include=FALSE} + +df_nh <- + codex_annotation %>% + add_prop(vars = c("Region", "Merged_final"), group.vars = 1) %>% + group_by(Merged_final) %>% + dplyr::mutate(Prop=scale(Prop)[,1]) + +pheat_nh <- df_nh %>% + pivot_wider(names_from = "Merged_final", values_from = "Prop") %>% + column_to_rownames("Region") %>% + pheatmap::pheatmap(silent = T) + +plot_nn_rLN <- ggplot(df_nh, aes(x=Merged_final, y=Region, fill=Prop))+ + geom_tile()+ + scale_fill_gradientn(colours = colorRampPalette(colors = c("#762a83", "#f7f7f7", "#1b7837"))(100), limits=c(-3, 3), + name="Scaled\nAbundance", breaks=c(-3,-1.5,0,1.5,3))+ + scale_x_discrete(limits=pheat_nh$tree_col$labels[pheat_nh$tree_col$order], expand = c(0,0), + labels=c("Plasma cells", "Mast cells", "Stromal cells", "Granulocytes", "NK cells", expression('T'[Pr]), + expression('T'[REG]), expression('Memory T'[TOX]), expression('CD8'^'+'~'naive'), "DC", + expression('CD4'^'+'~'naive'), expression('Memory T'[H]), "NK T-cells", "Macrophages", + expression('Exh. T'[TOX]), "B cells", "FDC", expression('T'[FH])))+ + scale_y_discrete(limits=rev(pheat_nh$tree_row$labels[pheat_nh$tree_row$order]), expand = c(0,0), name="Neighborhoods")+ + geom_vline(xintercept = seq(1.5, 17.5, 1), color="white", size=0.25)+ + geom_hline(yintercept = seq(1.5, 14.5, 1), color="white", size=0.25)+ + mytheme_1+ + coord_cartesian(clip = "off")+ + theme_bw()+ + mytheme_1+ + theme(legend.position = "right", + axis.title.x = element_blank(), + axis.title.y = element_text(vjust = 11), + axis.text.x = element_text(angle=45, hjust=1, size=7), + legend.text = element_text(size = 7, color="black"), + legend.title = element_text(size = 7, color="black", vjust = 0.8), + legend.key.height = unit(0.3, "cm"), + legend.key.width = unit(0.3, "cm"), + legend.box.spacing = unit(0.1, "cm"), + axis.text.y = element_blank(), + axis.ticks.y = element_blank(), + plot.tag = element_text(margin = unit(c(0,0.45,0,0), units = "cm")), + plot.margin = unit(c(0,0.25,0,0.25), "cm"))+ + labs(tag = "E") + +order_y <- rev(pheat_nh$tree_row$labels[pheat_nh$tree_row$order]) + +for(i in 1:length(pheat_nh$tree_row$order)) { + + plot_nn_rLN <- plot_nn_rLN+ + annotation_custom(grob = rectGrob(gp = gpar( fill=colors_nn[order_y][i], lex=1, col="white")), + ymin = seq(0.5, length(colors_nn)-0.5, 1)[i], + ymax = seq(1.5, length(colors_nn)+0.5, 1)[i], + xmin = 0, xmax = -1.1)+ + annotation_custom(grob = textGrob(label = paste0("N", order_y)[i], gp = gpar(cex=0.6)), + ymin = seq(0.5, length(colors_nn)-0.5, 1)[i], + ymax = seq(1.5, length(colors_nn)+0.5, 1)[i], + xmin = 0, xmax = -1.1) + +} + +``` + +## NH proportions +```{r neighborhood composition, fig.height=3} + +roi <- c(4,2,1,7) + +df_freq_nh <- codex_annotation %>% + left_join(., nn_classes) %>% + add_prop(vars = c("Entity", "Region", "unique_region"), group.vars = 3) %>% + fill_zeros(names_from = "Region", values_from = "Prop") + +pvalues <- df_freq_nh %>% + compare_means(data=., formula = Prop ~ Entity, ref.group = "rLN", + group.by = "Region", p.adjust.method = "BH") %>% + filter(p.adj<0.07) %>% + mutate(p.adj_s=format(p.adj, scientific = TRUE, digits=1)) %>% + mutate(p.adj_f=case_when(p.adj > 0.01 ~ as.character(round(p.adj, 2)), + p.adj==0.01 ~ "0.01", + p.adj < 0.01 ~ p.adj_s), + Entity=group2) %>% + filter(!is.na(p.adj)) %>% + mutate(Entity=factor(Entity, levels = c("rLN", "DLBCL", "MCL", "FL", "MZL"))) %>% + filter(Region %in% roi) %>% + mutate(Region=factor(Region, levels = roi)) %>% + arrange(Region,Entity) %>% + mutate(Y=c(0.68,0.1,0.35,0.55,0.77,0.09,0.20,0.09)) %>% + mutate(Region_nn=paste0("N", Region)) %>% + mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) + +# Points to modify facet scales +d <- data.frame(Entity="rLN", Region=roi, Y=c(0.7, 0.55, 0.79, 0.35)) %>% + mutate(Region=factor(Region, levels = roi)) %>% + mutate(Region_nn=paste0("N", Region)) %>% + mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) + +df_medianLines <- df_freq_nh %>% + filter(Entity=="rLN") %>% + group_by(Region) %>% + dplyr::summarise(MedianProp=median(Prop)) %>% + filter(Region %in% roi) %>% + mutate(Region=factor(Region, levels = roi)) %>% + mutate(Region_nn=paste0("N", Region)) %>% + mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) + +plot_freq_nn <- df_freq_nh %>% + filter(Region %in% roi) %>% + mutate(Region_nn=paste0("N", Region)) %>% + mutate(Region_nn=factor(Region_nn, levels = paste0("N", roi))) %>% + mutate(Region=factor(Region, levels = roi)) %>% + ggplot(aes(x=Entity, y=Prop)) + + geom_hline(data=df_medianLines, aes(yintercept=MedianProp), + size=0.25, linetype="dashed", color="grey60")+ + geom_boxplot(width=0.5, outlier.alpha = 0, size=0.25)+ + ggbeeswarm::geom_beeswarm(size=0.8, shape=21, stroke=0.1, cex = 1.75, aes(fill=Region))+ + geom_text(data=pvalues, inherit.aes = F, aes(y=Y, x=Entity, label=p.adj_f), size=2.5)+ + geom_point(data = d, alpha=0, aes(x=Entity, y=Y))+ + scale_fill_manual(values = colors_nn)+ + scale_x_discrete(limits=c("rLN", "DLBCL", "MCL", "FL", "MZL"))+ + facet_wrap(~Region_nn, strip.position = "right", scales = "free_y")+ + ylab("% of total area")+ + mytheme_1+ + theme(strip.text.y = element_text(angle = 0, size=7, margin = unit(units = "cm", c(0.075,0.075,0.075,0.075))), + axis.text.x = element_text(angle=45, hjust=1), + axis.title.x = element_blank(), + plot.margin = unit(c(0,0,0,0.1), "cm"))+ + labs(tag = "F") + +g <- ggplot_gtable(ggplot_build(plot_freq_nn)) + +g$grobs[[22]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["2"] +g$grobs[[23]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["7"] +g$grobs[[24]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["4"] +g$grobs[[25]]$grobs[[1]]$children[[1]]$gp$fill <- colors_nn["1"] + +plot_nn_rLN+wrap_ggplot_grob(g)+plot_layout(widths = c(1.6,1.2)) + +ggsave(width = 18.3, height = 6, units = "cm", filename = "Figure7_p4.pdf") + +``` + +# B-NHL examples +## Cells colored by NH +```{r, fig.height=3} + +regions_nn <- c("191_2reg006", "191_3reg003", "191_4reg002") +names(regions_nn) <- c("MCL", "FL", "DLBCL") +plot_nn <- list() + +for(r in regions_nn){ + df_tmp <- codex_annotation %>% + filter(unique_region==r) %>% + filter(x>500, x<7500) %>% + filter(y>500, y<7500) %>% + filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2) + +plot_nn[[r]] <- df_tmp %>% + ggplot()+ + geom_point(data = data.frame(x=min(df_tmp$x)+2500, y=min(df_tmp$y)+2500), stroke=2, + aes(x=x,y=y), shape=21, color="white", fill="white", size=72.5)+ + ggrastr::geom_point_rast(aes(x=x,y=y,color=Region, fill=Region), shape=21, size=0.25, stroke=0, alpha=1, raster.dpi = 400)+ + scale_color_manual(values = colors_nn)+ + scale_fill_manual(values = colors_nn)+ + guides(color=guide_legend(override.aes = list(size=3)))+ + coord_fixed(clip = "off")+ + theme_void()+ + theme(legend.position = "none", + legend.title = element_blank(), + plot.background = element_rect(fill=NA, color=NA), + legend.text = element_text(size=6), + legend.spacing.x = unit("cm", x = 0.1), + legend.key.height = unit("cm", x = 0.4), + legend.key.width = unit("cm", x = 0.2)) + +#ggsave(plot_nn[[r]], width = 6, height = 6, units = "cm", filename = paste("Figure7_", r, ".pdf")) +} + +plot_nn + +``` + +## Cells colored by subset +```{r, fig.height=3} + +regions_nn <- c("191_2reg006", "191_3reg003", "191_4reg002") +names(regions_nn) <- c("MCL", "FL", "DLBCL") +df_images <- list() +images <- list() + +margins <- c(0.1, 0, 0.4, -0.5) +dpi <- 600 + +for(r in 1:3){ + +df_images[[r]] <- codex_annotation %>% + filter(unique_region==regions_nn[r]) %>% + filter(x>500, x<7500) %>% + filter(y>500, y<7500) %>% + mutate(Merged_all_simple=ifelse(Merged_final %in% c("Granulo", "Macro", "DC"), "Myeloid", Merged_final)) %>% + mutate(Merged_all_simple=ifelse(Merged_all_simple %in% c("PC", "MC", "NK", "NKT"), "Other", Merged_all_simple)) %>% + filter(((x-mean(.$x))^2+(y-mean(.$y))^2)<2500^2) + +images[[r]] <- + ggplot()+ + geom_point_rast(data=df_images[[r]] %>% filter(Merged_all_simple=="B"), aes(x=x,y=y), + shape=21, size=0.25, stroke=0, alpha=1, raster.dpi =dpi, + color=colors_codex[["B"]], fill=colors_codex[["B"]])+ + geom_point_rast(data=df_images[[r]] %>% filter(Merged_all_simple!="B"), + aes(x=x,y=y, fill=Merged_all_simple, color=Merged_all_simple), + shape=21, size=0.25, stroke=0, alpha=1, raster.dpi=dpi)+ + scale_color_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name="Cell type")+ + scale_fill_manual(values = colors_codex, limits=limits_codex, labels=labels_codex, name="Cell type")+ + ggtitle(unique(df_images[[r]]$Entity))+ + coord_fixed()+ + theme_void()+ + theme(legend.position = "none", + plot.title = element_text(color="white", hjust=0.1, size=10, + margin = unit(units = "cm", c(0,0,-1,0)), face = "bold"), + plot.margin = unit(units = "cm", margins), + panel.background = element_rect(fill = "black", color="black"), + plot.background = element_rect(fill = "black", color="black")) + +} + +#images + +emptyplot <- ggplot()+ + geom_point_rast(data=df_images[[1]] %>% filter(Merged_final=="BC"), aes(x=x,y=y), raster.dpi = dpi, shape=".", + color=colors_codex[["B"]])+ + coord_fixed()+ + mytheme_codex+ + theme(panel.background = element_rect(fill = "black", color="black"), + plot.background = element_rect(fill = "black", color="black")) + +p_full <- images[[3]]+emptyplot+images[[1]]+emptyplot+images[[2]]+emptyplot+plot_layout(widths = c(1,0.1,1,0.1,1,0.3)) +p_full + +#ggsave(p_full, width = 22.5, height = 6, units = "cm", filename = "Figure7_mini.pdf") + +``` + +## Legend +```{r, fig.height=1} + +plot.legend <- images[[r]]+ + guides(fill=guide_legend(nrow = 1, override.aes = list(size=1.75, color="white", stroke=0.25)))+ + guides(color=guide_legend(nrow = 1, override.aes = list(size=1.75, color="white", stroke=0.25)))+ + theme(legend.position = "bottom", + legend.title = element_blank(), + legend.box.background = element_rect(fill = "black"), + legend.box.margin = unit(units = "cm", c(0, 0, 0, 0)), + legend.spacing.x = unit("cm", x = 0.1), + legend.key.height = unit("cm", x = 0.34), + legend.key.width = unit("cm", x = 0.16), + plot.margin = unit(units = "cm", c(0,0,0,0)), + plot.background = element_rect(fill = "black", color="black"), + panel.background = element_rect(fill = "black", color="black"), + legend.text = element_text(color="white", size=6.5)) + +as_ggplot(get_legend(plot.legend)) +#ggsave(width = 19, height = 1, units = "cm", filename = "Figure7_legend.pdf") + +``` + +# Closest cells to B-cells +```{r fig.height=2.2} + +codex_freq <- codex_annotation %>% + add_prop(vars = c("unique_region", "Merged_final"), group.vars = 1) + +nn <- run_NNanalysis(data = codex_annotation, regions = unique(codex_annotation$unique_region), + plan_session = "multisession", + add.prop=FALSE, + n_workers = 10, + nn = 1) + +nn_sum <- + nn %>% select(-name) %>% + left_join(codex_annotation %>% select(unique_cell_id, unique_region)) %>% + left_join(codex_annotation %>% select(unique_cell_id, Ident_center=Merged_final)) %>% + filter(Ident_center=="B", ) %>% + add_prop(vars = c("unique_region", "Merged_final"), group.vars = 1) %>% + mutate(Prop=100*Prop) %>% + left_join(., codex_annotation %>% select(unique_region, Entity) %>% distinct) + + +art_max <- c(20, 14, 11, 12) +names(art_max) <- c("rLN", "DLBCL", "MCL", "FL") +plot_nn <- list() + +for(e in names(art_max)){ + + selected <- + nn_sum %>% filter(Entity==e) %>% + group_by(Merged_final) %>% + summarise(Mean=mean(Prop), SEM=sd(Prop)/sqrt(length(Prop))) %>% + top_n(Mean, n = 10) %>% + mutate(code=Merged_final=="FDC") %>% + mutate(SEM=ifelse(Mean>art_max[e], NA, SEM)) %>% + mutate(Mean_new=ifelse(Mean>art_max[e], art_max[e], Mean)) + + order_ <- selected %>% + arrange(desc(Mean_new)) %>% + pull(Merged_final) + + mean_pat <- nn_sum %>% filter(Entity==e) %>% + left_join(codex_annotation %>% select(PatientID, unique_region) %>% distinct) %>% + group_by(PatientID, Merged_final) %>% + summarise(Mean_pat=mean(Prop)) + + plot_nn[[e]] <- + selected %>% + ggplot(aes(x=reorder(Merged_final, -Mean_new), y=Mean_new, fill=Merged_final, color=code))+ + geom_errorbar(aes(ymin=Mean_new, ymax=Mean_new+SEM), width=0.2, color="black", size=0.25)+ + geom_bar(stat = "identity", size=0.5, width=0.5, fill="white", color="white")+ + geom_bar(stat = "identity", size=0.25, width=0.5, alpha=0.6)+ + ggbeeswarm::geom_beeswarm(data=mean_pat, inherit.aes = F, aes(x=Merged_final, y=Mean_pat), + color="black", stroke=0, size=0.65, alpha=0.5, cex=1.75)+ + annotation_custom(grob = textGrob(label = e, just = "right", x = 0.92, y=0.9, gp = gpar(cex=0.6)))+ + geom_segment(inherit.aes = F, + aes(x=1, xend=1, y=1.02*Mean_new[1], yend=1.14*Mean_new[1]), + color="black", size=0.15, + arrow = arrow(type = "closed", length = unit(units = "cm", 0.1)))+ + geom_text(aes(x=2.2, y=1.08*Mean_new[1], label=round(Mean[1],1)), + check_overlap = T, size=2.5, color="black")+ + scale_color_manual(values = c("white", "black"), limits=c(F, T))+ + scale_fill_manual(values = colors_codex_exp)+ + scale_x_discrete(limits=order_, labels=unlist(labels_codex_exp))+ + scale_y_continuous(name = "% of cells closest\nto B-cells", limits=c(0,1.15*art_max[e]))+ + mytheme_1+ + theme(legend.position = "none", + axis.text.x = element_text(angle=45, hjust=1, size=7), + plot.background = element_rect(fill = NA, colour = NA), + panel.background = element_rect(fill = NA, colour = NA), + plot.margin = unit(c(0,0.1,0,0), "cm"), + axis.title.x = element_blank()) + + if(e!="rLN") { + plot_nn[[e]] <- plot_nn[[e]]+ + theme(axis.title.y = element_blank())} +} + +plot_nn$rLN+labs(tag = "G")+plot_nn$DLBCL+ + plot_nn$MCL+plot_nn$FL+ + plot_layout(nrow = 1) + +#ggsave(width = 18, height = 4.75, units = "cm", filename = "Figure7_p5.pdf") + +``` + +# Session info +```{r} + +sessionInfo() + +```