|
a |
|
b/figures/Figure6.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "Figure 6" |
|
|
3 |
author: Tobias Roider |
|
|
4 |
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" |
|
|
5 |
output: |
|
|
6 |
rmdformats::readthedown: |
|
|
7 |
|
|
|
8 |
editor_options: |
|
|
9 |
chunk_output_type: console |
|
|
10 |
--- |
|
|
11 |
|
|
|
12 |
```{r options, include=FALSE, warning = FALSE} |
|
|
13 |
|
|
|
14 |
library(knitr) |
|
|
15 |
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, |
|
|
16 |
dpi = 100, cache = FALSE, warning = FALSE) |
|
|
17 |
opts_knit$set(root.dir = "../") |
|
|
18 |
options(bitmapType = "cairo") |
|
|
19 |
|
|
|
20 |
``` |
|
|
21 |
|
|
|
22 |
# Read data, functions and packages |
|
|
23 |
```{r read data} |
|
|
24 |
|
|
|
25 |
source("R/ReadPackages.R") |
|
|
26 |
source("R/Functions.R") |
|
|
27 |
source("R/ReadData.R") |
|
|
28 |
source("R/ThemesColors.R") |
|
|
29 |
source("R/Helpers.R") |
|
|
30 |
|
|
|
31 |
``` |
|
|
32 |
|
|
|
33 |
# Part 1 |
|
|
34 |
## Frequencies |
|
|
35 |
```{r frequencies treg} |
|
|
36 |
|
|
|
37 |
df_freq_treg <- df_comb %>% |
|
|
38 |
add_prop(vars = c("PatientID", "Entity", "IdentI"), group.vars = 1) %>% |
|
|
39 |
fill_zeros(values_from = "Prop", names_from = "IdentI") %>% |
|
|
40 |
filter(IdentI %in% c(6,11)) |
|
|
41 |
|
|
|
42 |
pvalues <- df_freq_treg %>% |
|
|
43 |
group_by(IdentI) %>% |
|
|
44 |
wilcox_test(data=., formula = Prop ~ Entity, comparisons = list(c("FL", "rLN"), c("MZL", "rLN"))) %>% |
|
|
45 |
select(IdentI, Entity=group1, p) %>% |
|
|
46 |
mutate(p_s=format(p, scientific = TRUE, digits=1)) %>% |
|
|
47 |
mutate(p_f=case_when(p > 0.05 ~ "NA", |
|
|
48 |
p==0.05 ~ "0.05", |
|
|
49 |
p < 0.05 & p > 0.001 ~ as.character(round(p, 3)), |
|
|
50 |
p==0.001 ~ "0.001", |
|
|
51 |
p < 0.001 ~ p_s)) |
|
|
52 |
|
|
|
53 |
p1 <- |
|
|
54 |
df_freq_treg %>% |
|
|
55 |
filter(IdentI %in% c(6)) %>% |
|
|
56 |
ggplot(aes(x=Entity, y=100*Prop))+ |
|
|
57 |
geom_boxplot(width=0.5, outlier.alpha = 0, size=0.25)+ |
|
|
58 |
ggbeeswarm::geom_beeswarm(size=0.75, shape=21, stroke=0.25, cex = 2.25, aes(fill=Entity))+ |
|
|
59 |
geom_text(inherit.aes = F, data = pvalues %>% filter(IdentI==6) %>% mutate(Y=c(38,45)), |
|
|
60 |
aes(x=Entity, y=Y, label=p_f), size=2.5)+ |
|
|
61 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
62 |
ggtitle(expression('T'[FH]))+ |
|
|
63 |
scale_y_continuous(limits = c(0,60), name="% of total T-cells (CITE-seq)")+ |
|
|
64 |
scale_x_discrete(limits=c("rLN", "DLBCL", "MCL", "FL", "MZL"))+ |
|
|
65 |
mytheme_1+ |
|
|
66 |
theme(legend.position = "none", |
|
|
67 |
strip.background = element_rect(color=NA), |
|
|
68 |
axis.title.x = element_blank(), |
|
|
69 |
panel.border = element_rect(size=0.5), |
|
|
70 |
plot.title = element_text(vjust = -1, color=colors_umap_cl[["6"]]), |
|
|
71 |
axis.text.x = element_text(angle=45, hjust = 1), |
|
|
72 |
panel.background = element_rect(fill=NA), |
|
|
73 |
plot.margin = unit(c(0,0.1,0,0.25), "cm"))+ |
|
|
74 |
labs(tag = "A") |
|
|
75 |
|
|
|
76 |
p2 <- |
|
|
77 |
df_freq_treg %>% |
|
|
78 |
filter(IdentI %in% c(11)) %>% |
|
|
79 |
ggplot(aes(x=Entity, y=100*Prop))+ |
|
|
80 |
geom_boxplot(width=0.5, outlier.alpha = 0, size=0.25)+ |
|
|
81 |
ggbeeswarm::geom_beeswarm(size=0.75, shape=21, stroke=0.25, cex = 2.25, aes(fill=Entity))+ |
|
|
82 |
geom_text(inherit.aes = F, data = pvalues %>% filter(IdentI==11) %>% mutate(Y=c(16,17.5)), |
|
|
83 |
aes(x=Entity, y=Y, label=p_f), size=2.5)+ |
|
|
84 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
85 |
ggtitle(expression('T'[REG]~'EM'[2]))+ |
|
|
86 |
scale_y_continuous(limits = c(0,18.25), name="% of total T-cells (CITE-seq)")+ |
|
|
87 |
scale_x_discrete(limits=c("rLN", "DLBCL", "MCL", "FL", "MZL"))+ |
|
|
88 |
mytheme_1+ |
|
|
89 |
theme(strip.background = element_rect(color=NA), |
|
|
90 |
plot.title = element_text(vjust = -1, color=colors_umap_cl[["11"]]), |
|
|
91 |
axis.text.x = element_text(angle=45, hjust = 1), |
|
|
92 |
panel.border = element_rect(size=0.5), |
|
|
93 |
axis.title = element_blank(), |
|
|
94 |
panel.background = element_rect(fill=NA), |
|
|
95 |
plot.margin = unit(c(0,0.25,0,0.1), "cm")) |
|
|
96 |
|
|
|
97 |
``` |
|
|
98 |
|
|
|
99 |
## Surface proteins |
|
|
100 |
```{r surface proteins} |
|
|
101 |
|
|
|
102 |
proteins_selected <- c("CD69"="CD69", |
|
|
103 |
"CD25"="CD25", |
|
|
104 |
"ICOS"="CD278", |
|
|
105 |
"CD134"="CD134", |
|
|
106 |
"CD161"="CD161", |
|
|
107 |
"CCR4"="CD194", |
|
|
108 |
"CCR5"="CD195", |
|
|
109 |
"CXCR3"="CD183", |
|
|
110 |
"CXCR5"="CD185", |
|
|
111 |
"PD1"="CD279", |
|
|
112 |
"CD38"="CD38", |
|
|
113 |
"CD39"="CD39", |
|
|
114 |
"TIGIT"="TIGIT") |
|
|
115 |
|
|
|
116 |
p3 <- |
|
|
117 |
left_join(percentageADT, meanADT) %>% |
|
|
118 |
filter(IdentI %in% c(6, 8, 11, 15, 13), Epitope %in% proteins_selected) %>% |
|
|
119 |
ggplot(aes(x=Epitope, y=IdentI, size=100*Prop, fill=Expression))+ |
|
|
120 |
geom_point(shape=21, stroke=0.1, color="grey45")+ |
|
|
121 |
scale_size_continuous(range=c(0, 4), name="% pos. cells", limits=c(0, 100))+ |
|
|
122 |
scale_fill_gradientn(name="Expression", colours = brewer.pal(5, "BuGn"), limits=c(0,1))+ |
|
|
123 |
scale_y_discrete(limits=rev(as.character(c(6, 8, 13, 15, 11))), |
|
|
124 |
labels=parse(text=rev(labels_cl_parsed[5:9])) |
|
|
125 |
)+ |
|
|
126 |
scale_x_discrete(limits=unname(proteins_selected), labels=names(proteins_selected))+ |
|
|
127 |
ggtitle("Protein level")+ |
|
|
128 |
coord_cartesian(clip = "off")+ |
|
|
129 |
theme_bw()+ |
|
|
130 |
theme(axis.title = element_blank(), |
|
|
131 |
legend.position = "right", |
|
|
132 |
axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
133 |
axis.text.y = element_blank(), |
|
|
134 |
axis.text = element_text(size=7), |
|
|
135 |
axis.ticks.y = element_blank(), |
|
|
136 |
legend.text = element_text(size = 7, color="black"), |
|
|
137 |
legend.title = element_text(size = 7, color="black", vjust = 0.5), |
|
|
138 |
legend.box.margin=margin(-10,-10,-8,-8), |
|
|
139 |
legend.key.height = unit(0.3, "cm"), |
|
|
140 |
legend.key.width = unit(0.3, "cm"), |
|
|
141 |
panel.border = element_rect(size=0.25), |
|
|
142 |
plot.margin = unit(c(0,0.5,0,0.5), "cm"), |
|
|
143 |
plot.tag = element_text(margin = unit(c(0,1,0,0), "cm")), |
|
|
144 |
plot.title = element_text(size = 7, color="black", vjust = -1, hjust = 0.5, face = "bold"), |
|
|
145 |
panel.grid = element_blank())+ |
|
|
146 |
labs(tag = "B") |
|
|
147 |
|
|
|
148 |
for(i in 5:9) { |
|
|
149 |
|
|
|
150 |
p3 <- p3+ |
|
|
151 |
annotation_custom(grob = rectGrob(gp = gpar(fill=colors_umap_cl[as.character(cluster_order)[i]], col="white")), |
|
|
152 |
ymin = rev(c(seq(0.5, 4.5, 1)+0.25))[i-4], |
|
|
153 |
ymax = rev(c(seq(1.5, 5.5, 1)-0.25))[i-4], |
|
|
154 |
xmin = 0, xmax = -0.75)+ |
|
|
155 |
annotation_custom(grob = textGrob(label = labels_cl[[i]], rot = 0, hjust = 1, gp = gpar(cex=0.6)), |
|
|
156 |
ymin = rev(c(seq(0.5, 4.5, 1)+0.25))[i-4], |
|
|
157 |
ymax = rev(c(seq(1.5, 5.5, 1)-0.25))[i-4], |
|
|
158 |
xmin = -1, xmax = -1) |
|
|
159 |
} |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
``` |
|
|
163 |
|
|
|
164 |
## Assemble plot |
|
|
165 |
```{r assemble plot I, fig.height=2.5} |
|
|
166 |
|
|
|
167 |
p1+p2+p3+plot_layout(widths = c(1,1,1.45)) |
|
|
168 |
ggsave(width = 18.5, height = 5.8, units = "cm", filename = "Figure6_p1.pdf") |
|
|
169 |
|
|
|
170 |
``` |
|
|
171 |
|
|
|
172 |
# Part 2 |
|
|
173 |
## Differentially expressed genes |
|
|
174 |
```{r differentially expressed genes} |
|
|
175 |
|
|
|
176 |
height.label <- 0.94 |
|
|
177 |
position.label <- 1.1 |
|
|
178 |
Idents(Combined_T) <- "IdentI" |
|
|
179 |
|
|
|
180 |
df_markers1115 <- FindMarkers(Combined_T, ident.1 = 11, ident.2 = c(15), test.use = "roc", assay = "integratedRNA") %>% |
|
|
181 |
rownames_to_column("Feature") %>% mutate(Assay="Gene") |
|
|
182 |
|
|
|
183 |
labels <- c("KLF2", "IKZF3", "IL21", "ASCL2", "IKZF2", "FOXP3", "CXCL13") |
|
|
184 |
|
|
|
185 |
df_tmp <- df_markers1115 %>% mutate(Label=ifelse(Feature %in% labels, Feature, NA)) %>% |
|
|
186 |
mutate(Label=gsub(Label, pattern = ".", fixed = T, replacement = "")) |
|
|
187 |
|
|
|
188 |
df_tmp1 <- df_tmp %>% filter(avg_log2FC<0) |
|
|
189 |
df_tmp2 <- df_tmp %>% filter(avg_log2FC>0) |
|
|
190 |
|
|
|
191 |
p4 <- |
|
|
192 |
ggplot()+ |
|
|
193 |
geom_point(data=df_tmp1, aes(x=avg_log2FC, y=power), alpha=ifelse(!is.na(df_tmp1$Label), 1, 0.25), stroke=0, size=1.25)+ |
|
|
194 |
geom_point(data=df_tmp2, aes(x=avg_log2FC, y=power), alpha=ifelse(!is.na(df_tmp2$Label), 1, 0.25), stroke=0, size=1.25)+ |
|
|
195 |
ggrepel::geom_text_repel(data=df_tmp1, aes(x=avg_log2FC, y=power, label=Label), show.legend = F, size=2.5, segment.size=0.25, xlim = c(-1.25, -1.75))+ |
|
|
196 |
ggrepel::geom_text_repel(data=df_tmp2, aes(x=avg_log2FC, y=power, label=Label), show.legend = F, size=2.5, segment.size=0.25, xlim = c(1.3, 1.5))+ |
|
|
197 |
geom_vline(xintercept = 0, linetype="dashed", size=0.25)+ |
|
|
198 |
scale_y_continuous(breaks = c(0.2, 0.4, 0.6, 0.8), limits=c(0.1, 0.85), name="2 x abs(AUC-0.5)")+ |
|
|
199 |
scale_x_continuous(name=expression('log'[2]~'fold change'), limits = c(-2.2, 2.2), expand = c(0,0))+ |
|
|
200 |
annotation_custom(grob = textGrob(label = expression('T'[REG]~'EM'[1]), hjust = 0.5, gp = gpar(cex=0.6, fontface="bold", col=colors_umap_cl["15"])), |
|
|
201 |
xmin = -position.label, xmax = -position.label, |
|
|
202 |
ymin = height.label, ymax = height.label)+ |
|
|
203 |
annotation_custom(grob = textGrob(label = expression('T'[REG]~'EM'[2]), hjust = 0.5, gp = gpar(cex=0.6, fontface="bold", col=colors_umap_cl["11"])), |
|
|
204 |
xmin = position.label, xmax = position.label, |
|
|
205 |
ymin = height.label, ymax = height.label)+ |
|
|
206 |
mytheme_1+ |
|
|
207 |
coord_cartesian(clip = "off")+ |
|
|
208 |
theme(legend.position = c(0.17, 0.15), |
|
|
209 |
legend.key.height = unit(units="cm", 0.3), |
|
|
210 |
legend.box.spacing = unit(units="cm", 0.01), |
|
|
211 |
legend.text = element_text(size=7), |
|
|
212 |
panel.border = element_rect(size=0.25), |
|
|
213 |
plot.margin = unit(c(0,0.25,0,0), "cm"), |
|
|
214 |
legend.background = element_rect(fill = NA), |
|
|
215 |
legend.box.margin=margin(-20,-20,-20,-20), |
|
|
216 |
legend.key.width = unit(units="cm", 0.1))+ |
|
|
217 |
labs(tag = "C") |
|
|
218 |
|
|
|
219 |
``` |
|
|
220 |
|
|
|
221 |
## Shared clonotypes |
|
|
222 |
```{r shared clonotypes} |
|
|
223 |
|
|
|
224 |
df_clonotypes_shared <- |
|
|
225 |
left_join(DFtotal_5prime %>% filter(!is.na(raw_clonotype_id)) %>% |
|
|
226 |
select(Barcode_fulla=Barcode_full, PatientID, refUMAP_1a=refUMAP_1, refUMAP_2a=refUMAP_2, IdentIa=IdentI, raw_clonotype_id) %>% distinct(), |
|
|
227 |
DFtotal_5prime %>% filter(!is.na(raw_clonotype_id)) %>% |
|
|
228 |
select(Barcode_fullb=Barcode_full, PatientID, refUMAP_1b=refUMAP_1, refUMAP_2b=refUMAP_2, IdentIb=IdentI, raw_clonotype_id) %>% distinct() |
|
|
229 |
) %>% |
|
|
230 |
filter(Barcode_fulla!=Barcode_fullb) %>% |
|
|
231 |
filter(IdentIa!=IdentIb) |
|
|
232 |
|
|
|
233 |
df_subset <- |
|
|
234 |
df_clonotypes_shared %>% |
|
|
235 |
add_entity() %>% |
|
|
236 |
filter(IdentIb==11) %>% |
|
|
237 |
filter(refUMAP_1b<1, refUMAP_2b>4) |
|
|
238 |
|
|
|
239 |
label6 <- paste0(100*round(nrow(df_subset %>% filter(IdentIa==6))/nrow(df_subset), 3), " %") |
|
|
240 |
label14 <- paste0(100*round(nrow(df_subset %>% filter(IdentIa==14))/nrow(df_subset), 3), " %") |
|
|
241 |
label5 <- paste0(100*round(nrow(df_subset %>% filter(IdentIa==5))/nrow(df_subset), 3), " %") |
|
|
242 |
|
|
|
243 |
p5 <- ggplot()+ |
|
|
244 |
geom_point_rast(data=DFtotal_5prime, |
|
|
245 |
aes(x=refUMAP_1, y=refUMAP_2, fill=IdentI), size=0.25, |
|
|
246 |
alpha=ifelse(DFtotal_5prime$IdentI==11, 0.75, 0.05), stroke=0, shape=21)+ |
|
|
247 |
geom_curve(data= df_subset, |
|
|
248 |
aes(x=refUMAP_1a, y=refUMAP_2a, xend=refUMAP_1b, yend=refUMAP_2b, color=IdentIa, |
|
|
249 |
group=paste(raw_clonotype_id, PatientID)), curvature = -0.4, size=0.1, alpha=0.4)+ |
|
|
250 |
geom_text(inherit.aes = F, aes(x=-0.75, y=8.5, label=label6), color=colors_umap_cl[["6"]], size=2.5)+ |
|
|
251 |
geom_text(inherit.aes = F, aes(x=4.5, y=6.75, label=label14), color=colors_umap_cl[["14"]], size=2.5)+ |
|
|
252 |
geom_text(inherit.aes = F, aes(x=8, y=1, label=label5), color=colors_umap_cl[["5"]], size=2.5)+ |
|
|
253 |
scale_fill_manual(values = colors_umap_cl, guide="none")+ |
|
|
254 |
scale_color_manual(values = colors_umap_cl, guide="none")+ |
|
|
255 |
coord_cartesian(clip = "off")+ |
|
|
256 |
labs( |
|
|
257 |
x="refUMAP-1", |
|
|
258 |
y="refUMAP-2", |
|
|
259 |
title="Paired clonotypes of <span style='color:#08306B'>T<sub>REG</sub> EM<sub>2</sub></span>")+ |
|
|
260 |
mytheme_1+ |
|
|
261 |
theme(panel.border = element_rect(size=0.25), |
|
|
262 |
plot.title = element_textbox_simple(size = 7, width = NULL, padding = margin(1.25, 0, 1, 0), |
|
|
263 |
lineheight = 1.25, halign=0.5, face = "plain"), |
|
|
264 |
plot.margin = unit(c(0,0.25,0,0), units = "cm"))+ |
|
|
265 |
labs(tag = "D") |
|
|
266 |
|
|
|
267 |
|
|
|
268 |
``` |
|
|
269 |
|
|
|
270 |
## Association with FL grade |
|
|
271 |
```{r tumor grading} |
|
|
272 |
|
|
|
273 |
p6 <- df_freq %>% |
|
|
274 |
left_join(., df_meta %>% select(PatientID, FL_Grade, Entity) %>% distinct, by="PatientID") %>% |
|
|
275 |
filter(Population==11, Entity=="FL") %>% |
|
|
276 |
ggplot(aes(x=FL_Grade, y=RNA))+ |
|
|
277 |
geom_boxplot(size=0.25, width=0.3, outlier.alpha = 0)+ |
|
|
278 |
ggbeeswarm::geom_beeswarm(size=0.8, shape=21, stroke=0.25, cex = 2.75, fill="grey65")+ |
|
|
279 |
stat_compare_means(comparisons = list(c("1/2", "3A")), vjust = -0.35, label.y = c(16.75), |
|
|
280 |
size=2.5, tip.length = 0.02, bracket.size = 0.25)+ |
|
|
281 |
ggtitle(expression('T'[REG]~'EM'[2]))+ |
|
|
282 |
xlab("Grade")+ |
|
|
283 |
ylim(0,18.25)+ |
|
|
284 |
ylab("% of total T-cells")+ |
|
|
285 |
mytheme_1+ |
|
|
286 |
theme(legend.position = "none", |
|
|
287 |
strip.background = element_rect(color=NA), |
|
|
288 |
panel.border = element_rect(size=0.5), |
|
|
289 |
plot.title = element_text(vjust = -1, color=colors_umap_cl[["11"]]), |
|
|
290 |
panel.background = element_rect(fill=NA), |
|
|
291 |
plot.margin = unit(c(0,0.25,0,0.25), "cm"))+ |
|
|
292 |
labs(tag = "E") |
|
|
293 |
|
|
|
294 |
p7 <- df_freq %>% |
|
|
295 |
left_join(., df_meta %>% select(PatientID, FL_Grade, Entity) %>% distinct, by="PatientID") %>% |
|
|
296 |
filter(Population==6, Entity=="FL") %>% |
|
|
297 |
ggplot(aes(x=FL_Grade, y=RNA))+ |
|
|
298 |
geom_boxplot(size=0.25, width=0.3, outlier.size = 1, outlier.alpha = 0, outlier.shape = 21, outlier.fill = "grey70")+ |
|
|
299 |
ggbeeswarm::geom_beeswarm(size=0.8, shape=21, stroke=0.25, cex = 2.75, fill="grey65")+ |
|
|
300 |
stat_compare_means(comparisons = list(c("1/2", "3A")), vjust = -0.35, label.y = c(59.5), |
|
|
301 |
size=2.5, tip.length = 0.02, bracket.size = 0.25)+ |
|
|
302 |
ggtitle(expression('T'[FH]))+ |
|
|
303 |
ylim(0,65)+ |
|
|
304 |
xlab("Grade")+ |
|
|
305 |
ylab("% of total T-cells")+ |
|
|
306 |
mytheme_1+ |
|
|
307 |
theme(legend.position = "none", |
|
|
308 |
strip.background = element_rect(color=NA), |
|
|
309 |
panel.border = element_rect(size=0.5), |
|
|
310 |
plot.title = element_text(vjust = -1, color=colors_umap_cl[["6"]]), |
|
|
311 |
panel.background = element_rect(fill=NA), |
|
|
312 |
plot.margin = unit(c(0,0.25,0,0.25), "cm"))+ |
|
|
313 |
labs(tag = "F") |
|
|
314 |
|
|
|
315 |
``` |
|
|
316 |
|
|
|
317 |
## Assemble plot |
|
|
318 |
```{r compose plot II, fig.height=2.8} |
|
|
319 |
|
|
|
320 |
p4+p5+p6+p7+plot_layout(widths = c(1.05,1,0.3,0.3)) |
|
|
321 |
|
|
|
322 |
#ggsave(width = 18.5, height = 6.5, units = "cm", filename = "Figure6_p2.pdf") |
|
|
323 |
|
|
|
324 |
``` |
|
|
325 |
|
|
|
326 |
# Session info |
|
|
327 |
```{r session info} |
|
|
328 |
|
|
|
329 |
sessionInfo() |
|
|
330 |
|
|
|
331 |
``` |