--- a +++ b/figures/Figure6.Rmd @@ -0,0 +1,331 @@ +--- +title: "Figure 6" +author: Tobias Roider +date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" +output: + rmdformats::readthedown: + +editor_options: + chunk_output_type: console +--- + +```{r options, include=FALSE, warning = FALSE} + +library(knitr) +opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, + dpi = 100, cache = FALSE, warning = FALSE) +opts_knit$set(root.dir = "../") +options(bitmapType = "cairo") + +``` + +# Read data, functions and packages +```{r read data} + +source("R/ReadPackages.R") +source("R/Functions.R") +source("R/ReadData.R") +source("R/ThemesColors.R") +source("R/Helpers.R") + +``` + +# Part 1 +## Frequencies +```{r frequencies treg} + +df_freq_treg <- df_comb %>% + add_prop(vars = c("PatientID", "Entity", "IdentI"), group.vars = 1) %>% + fill_zeros(values_from = "Prop", names_from = "IdentI") %>% + filter(IdentI %in% c(6,11)) + +pvalues <- df_freq_treg %>% + group_by(IdentI) %>% + wilcox_test(data=., formula = Prop ~ Entity, comparisons = list(c("FL", "rLN"), c("MZL", "rLN"))) %>% + select(IdentI, Entity=group1, p) %>% + mutate(p_s=format(p, scientific = TRUE, digits=1)) %>% + mutate(p_f=case_when(p > 0.05 ~ "NA", + p==0.05 ~ "0.05", + p < 0.05 & p > 0.001 ~ as.character(round(p, 3)), + p==0.001 ~ "0.001", + p < 0.001 ~ p_s)) + +p1 <- + df_freq_treg %>% + filter(IdentI %in% c(6)) %>% + ggplot(aes(x=Entity, y=100*Prop))+ + geom_boxplot(width=0.5, outlier.alpha = 0, size=0.25)+ + ggbeeswarm::geom_beeswarm(size=0.75, shape=21, stroke=0.25, cex = 2.25, aes(fill=Entity))+ + geom_text(inherit.aes = F, data = pvalues %>% filter(IdentI==6) %>% mutate(Y=c(38,45)), + aes(x=Entity, y=Y, label=p_f), size=2.5)+ + scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ + ggtitle(expression('T'[FH]))+ + scale_y_continuous(limits = c(0,60), name="% of total T-cells (CITE-seq)")+ + scale_x_discrete(limits=c("rLN", "DLBCL", "MCL", "FL", "MZL"))+ + mytheme_1+ + theme(legend.position = "none", + strip.background = element_rect(color=NA), + axis.title.x = element_blank(), + panel.border = element_rect(size=0.5), + plot.title = element_text(vjust = -1, color=colors_umap_cl[["6"]]), + axis.text.x = element_text(angle=45, hjust = 1), + panel.background = element_rect(fill=NA), + plot.margin = unit(c(0,0.1,0,0.25), "cm"))+ + labs(tag = "A") + +p2 <- + df_freq_treg %>% + filter(IdentI %in% c(11)) %>% + ggplot(aes(x=Entity, y=100*Prop))+ + geom_boxplot(width=0.5, outlier.alpha = 0, size=0.25)+ + ggbeeswarm::geom_beeswarm(size=0.75, shape=21, stroke=0.25, cex = 2.25, aes(fill=Entity))+ + geom_text(inherit.aes = F, data = pvalues %>% filter(IdentI==11) %>% mutate(Y=c(16,17.5)), + aes(x=Entity, y=Y, label=p_f), size=2.5)+ + scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ + ggtitle(expression('T'[REG]~'EM'[2]))+ + scale_y_continuous(limits = c(0,18.25), name="% of total T-cells (CITE-seq)")+ + scale_x_discrete(limits=c("rLN", "DLBCL", "MCL", "FL", "MZL"))+ + mytheme_1+ + theme(strip.background = element_rect(color=NA), + plot.title = element_text(vjust = -1, color=colors_umap_cl[["11"]]), + axis.text.x = element_text(angle=45, hjust = 1), + panel.border = element_rect(size=0.5), + axis.title = element_blank(), + panel.background = element_rect(fill=NA), + plot.margin = unit(c(0,0.25,0,0.1), "cm")) + +``` + +## Surface proteins +```{r surface proteins} + +proteins_selected <- c("CD69"="CD69", + "CD25"="CD25", + "ICOS"="CD278", + "CD134"="CD134", + "CD161"="CD161", + "CCR4"="CD194", + "CCR5"="CD195", + "CXCR3"="CD183", + "CXCR5"="CD185", + "PD1"="CD279", + "CD38"="CD38", + "CD39"="CD39", + "TIGIT"="TIGIT") + +p3 <- + left_join(percentageADT, meanADT) %>% + filter(IdentI %in% c(6, 8, 11, 15, 13), Epitope %in% proteins_selected) %>% + ggplot(aes(x=Epitope, y=IdentI, size=100*Prop, fill=Expression))+ + geom_point(shape=21, stroke=0.1, color="grey45")+ + scale_size_continuous(range=c(0, 4), name="% pos. cells", limits=c(0, 100))+ + scale_fill_gradientn(name="Expression", colours = brewer.pal(5, "BuGn"), limits=c(0,1))+ + scale_y_discrete(limits=rev(as.character(c(6, 8, 13, 15, 11))), + labels=parse(text=rev(labels_cl_parsed[5:9])) + )+ + scale_x_discrete(limits=unname(proteins_selected), labels=names(proteins_selected))+ + ggtitle("Protein level")+ + coord_cartesian(clip = "off")+ + theme_bw()+ + theme(axis.title = element_blank(), + legend.position = "right", + axis.text.x = element_text(angle = 45, hjust = 1), + axis.text.y = element_blank(), + axis.text = element_text(size=7), + axis.ticks.y = element_blank(), + legend.text = element_text(size = 7, color="black"), + legend.title = element_text(size = 7, color="black", vjust = 0.5), + legend.box.margin=margin(-10,-10,-8,-8), + legend.key.height = unit(0.3, "cm"), + legend.key.width = unit(0.3, "cm"), + panel.border = element_rect(size=0.25), + plot.margin = unit(c(0,0.5,0,0.5), "cm"), + plot.tag = element_text(margin = unit(c(0,1,0,0), "cm")), + plot.title = element_text(size = 7, color="black", vjust = -1, hjust = 0.5, face = "bold"), + panel.grid = element_blank())+ + labs(tag = "B") + +for(i in 5:9) { + + p3 <- p3+ + annotation_custom(grob = rectGrob(gp = gpar(fill=colors_umap_cl[as.character(cluster_order)[i]], col="white")), + ymin = rev(c(seq(0.5, 4.5, 1)+0.25))[i-4], + ymax = rev(c(seq(1.5, 5.5, 1)-0.25))[i-4], + xmin = 0, xmax = -0.75)+ + annotation_custom(grob = textGrob(label = labels_cl[[i]], rot = 0, hjust = 1, gp = gpar(cex=0.6)), + ymin = rev(c(seq(0.5, 4.5, 1)+0.25))[i-4], + ymax = rev(c(seq(1.5, 5.5, 1)-0.25))[i-4], + xmin = -1, xmax = -1) +} + + +``` + +## Assemble plot +```{r assemble plot I, fig.height=2.5} + +p1+p2+p3+plot_layout(widths = c(1,1,1.45)) +ggsave(width = 18.5, height = 5.8, units = "cm", filename = "Figure6_p1.pdf") + +``` + +# Part 2 +## Differentially expressed genes +```{r differentially expressed genes} + +height.label <- 0.94 +position.label <- 1.1 +Idents(Combined_T) <- "IdentI" + +df_markers1115 <- FindMarkers(Combined_T, ident.1 = 11, ident.2 = c(15), test.use = "roc", assay = "integratedRNA") %>% + rownames_to_column("Feature") %>% mutate(Assay="Gene") + +labels <- c("KLF2", "IKZF3", "IL21", "ASCL2", "IKZF2", "FOXP3", "CXCL13") + +df_tmp <- df_markers1115 %>% mutate(Label=ifelse(Feature %in% labels, Feature, NA)) %>% + mutate(Label=gsub(Label, pattern = ".", fixed = T, replacement = "")) + +df_tmp1 <- df_tmp %>% filter(avg_log2FC<0) +df_tmp2 <- df_tmp %>% filter(avg_log2FC>0) + +p4 <- + ggplot()+ + geom_point(data=df_tmp1, aes(x=avg_log2FC, y=power), alpha=ifelse(!is.na(df_tmp1$Label), 1, 0.25), stroke=0, size=1.25)+ + geom_point(data=df_tmp2, aes(x=avg_log2FC, y=power), alpha=ifelse(!is.na(df_tmp2$Label), 1, 0.25), stroke=0, size=1.25)+ + ggrepel::geom_text_repel(data=df_tmp1, aes(x=avg_log2FC, y=power, label=Label), show.legend = F, size=2.5, segment.size=0.25, xlim = c(-1.25, -1.75))+ + ggrepel::geom_text_repel(data=df_tmp2, aes(x=avg_log2FC, y=power, label=Label), show.legend = F, size=2.5, segment.size=0.25, xlim = c(1.3, 1.5))+ + geom_vline(xintercept = 0, linetype="dashed", size=0.25)+ + scale_y_continuous(breaks = c(0.2, 0.4, 0.6, 0.8), limits=c(0.1, 0.85), name="2 x abs(AUC-0.5)")+ + scale_x_continuous(name=expression('log'[2]~'fold change'), limits = c(-2.2, 2.2), expand = c(0,0))+ + annotation_custom(grob = textGrob(label = expression('T'[REG]~'EM'[1]), hjust = 0.5, gp = gpar(cex=0.6, fontface="bold", col=colors_umap_cl["15"])), + xmin = -position.label, xmax = -position.label, + ymin = height.label, ymax = height.label)+ + annotation_custom(grob = textGrob(label = expression('T'[REG]~'EM'[2]), hjust = 0.5, gp = gpar(cex=0.6, fontface="bold", col=colors_umap_cl["11"])), + xmin = position.label, xmax = position.label, + ymin = height.label, ymax = height.label)+ + mytheme_1+ + coord_cartesian(clip = "off")+ + theme(legend.position = c(0.17, 0.15), + legend.key.height = unit(units="cm", 0.3), + legend.box.spacing = unit(units="cm", 0.01), + legend.text = element_text(size=7), + panel.border = element_rect(size=0.25), + plot.margin = unit(c(0,0.25,0,0), "cm"), + legend.background = element_rect(fill = NA), + legend.box.margin=margin(-20,-20,-20,-20), + legend.key.width = unit(units="cm", 0.1))+ + labs(tag = "C") + +``` + +## Shared clonotypes +```{r shared clonotypes} + +df_clonotypes_shared <- + left_join(DFtotal_5prime %>% filter(!is.na(raw_clonotype_id)) %>% + select(Barcode_fulla=Barcode_full, PatientID, refUMAP_1a=refUMAP_1, refUMAP_2a=refUMAP_2, IdentIa=IdentI, raw_clonotype_id) %>% distinct(), + DFtotal_5prime %>% filter(!is.na(raw_clonotype_id)) %>% + select(Barcode_fullb=Barcode_full, PatientID, refUMAP_1b=refUMAP_1, refUMAP_2b=refUMAP_2, IdentIb=IdentI, raw_clonotype_id) %>% distinct() + ) %>% + filter(Barcode_fulla!=Barcode_fullb) %>% + filter(IdentIa!=IdentIb) + +df_subset <- + df_clonotypes_shared %>% + add_entity() %>% + filter(IdentIb==11) %>% + filter(refUMAP_1b<1, refUMAP_2b>4) + +label6 <- paste0(100*round(nrow(df_subset %>% filter(IdentIa==6))/nrow(df_subset), 3), " %") +label14 <- paste0(100*round(nrow(df_subset %>% filter(IdentIa==14))/nrow(df_subset), 3), " %") +label5 <- paste0(100*round(nrow(df_subset %>% filter(IdentIa==5))/nrow(df_subset), 3), " %") + +p5 <- ggplot()+ + geom_point_rast(data=DFtotal_5prime, + aes(x=refUMAP_1, y=refUMAP_2, fill=IdentI), size=0.25, + alpha=ifelse(DFtotal_5prime$IdentI==11, 0.75, 0.05), stroke=0, shape=21)+ + geom_curve(data= df_subset, + aes(x=refUMAP_1a, y=refUMAP_2a, xend=refUMAP_1b, yend=refUMAP_2b, color=IdentIa, + group=paste(raw_clonotype_id, PatientID)), curvature = -0.4, size=0.1, alpha=0.4)+ + geom_text(inherit.aes = F, aes(x=-0.75, y=8.5, label=label6), color=colors_umap_cl[["6"]], size=2.5)+ + geom_text(inherit.aes = F, aes(x=4.5, y=6.75, label=label14), color=colors_umap_cl[["14"]], size=2.5)+ + geom_text(inherit.aes = F, aes(x=8, y=1, label=label5), color=colors_umap_cl[["5"]], size=2.5)+ + scale_fill_manual(values = colors_umap_cl, guide="none")+ + scale_color_manual(values = colors_umap_cl, guide="none")+ + coord_cartesian(clip = "off")+ + labs( + x="refUMAP-1", + y="refUMAP-2", + title="Paired clonotypes of <span style='color:#08306B'>T<sub>REG</sub> EM<sub>2</sub></span>")+ + mytheme_1+ + theme(panel.border = element_rect(size=0.25), + plot.title = element_textbox_simple(size = 7, width = NULL, padding = margin(1.25, 0, 1, 0), + lineheight = 1.25, halign=0.5, face = "plain"), + plot.margin = unit(c(0,0.25,0,0), units = "cm"))+ + labs(tag = "D") + + +``` + +## Association with FL grade +```{r tumor grading} + +p6 <- df_freq %>% + left_join(., df_meta %>% select(PatientID, FL_Grade, Entity) %>% distinct, by="PatientID") %>% + filter(Population==11, Entity=="FL") %>% + ggplot(aes(x=FL_Grade, y=RNA))+ + geom_boxplot(size=0.25, width=0.3, outlier.alpha = 0)+ + ggbeeswarm::geom_beeswarm(size=0.8, shape=21, stroke=0.25, cex = 2.75, fill="grey65")+ + stat_compare_means(comparisons = list(c("1/2", "3A")), vjust = -0.35, label.y = c(16.75), + size=2.5, tip.length = 0.02, bracket.size = 0.25)+ + ggtitle(expression('T'[REG]~'EM'[2]))+ + xlab("Grade")+ + ylim(0,18.25)+ + ylab("% of total T-cells")+ + mytheme_1+ + theme(legend.position = "none", + strip.background = element_rect(color=NA), + panel.border = element_rect(size=0.5), + plot.title = element_text(vjust = -1, color=colors_umap_cl[["11"]]), + panel.background = element_rect(fill=NA), + plot.margin = unit(c(0,0.25,0,0.25), "cm"))+ + labs(tag = "E") + +p7 <- df_freq %>% + left_join(., df_meta %>% select(PatientID, FL_Grade, Entity) %>% distinct, by="PatientID") %>% + filter(Population==6, Entity=="FL") %>% + ggplot(aes(x=FL_Grade, y=RNA))+ + geom_boxplot(size=0.25, width=0.3, outlier.size = 1, outlier.alpha = 0, outlier.shape = 21, outlier.fill = "grey70")+ + ggbeeswarm::geom_beeswarm(size=0.8, shape=21, stroke=0.25, cex = 2.75, fill="grey65")+ + stat_compare_means(comparisons = list(c("1/2", "3A")), vjust = -0.35, label.y = c(59.5), + size=2.5, tip.length = 0.02, bracket.size = 0.25)+ + ggtitle(expression('T'[FH]))+ + ylim(0,65)+ + xlab("Grade")+ + ylab("% of total T-cells")+ + mytheme_1+ + theme(legend.position = "none", + strip.background = element_rect(color=NA), + panel.border = element_rect(size=0.5), + plot.title = element_text(vjust = -1, color=colors_umap_cl[["6"]]), + panel.background = element_rect(fill=NA), + plot.margin = unit(c(0,0.25,0,0.25), "cm"))+ + labs(tag = "F") + +``` + +## Assemble plot +```{r compose plot II, fig.height=2.8} + +p4+p5+p6+p7+plot_layout(widths = c(1.05,1,0.3,0.3)) + +#ggsave(width = 18.5, height = 6.5, units = "cm", filename = "Figure6_p2.pdf") + +``` + +# Session info +```{r session info} + +sessionInfo() + +```