|
a |
|
b/figures/Figure3.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "Figure 3" |
|
|
3 |
author: Tobias Roider |
|
|
4 |
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" |
|
|
5 |
output: |
|
|
6 |
rmdformats::readthedown: |
|
|
7 |
|
|
|
8 |
editor_options: |
|
|
9 |
chunk_output_type: console |
|
|
10 |
--- |
|
|
11 |
|
|
|
12 |
```{r options, include=FALSE, warning = FALSE} |
|
|
13 |
|
|
|
14 |
library(knitr) |
|
|
15 |
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, |
|
|
16 |
dpi = 100, cache = FALSE, warning = FALSE) |
|
|
17 |
opts_knit$set(root.dir = "../") |
|
|
18 |
options(bitmapType = "cairo") |
|
|
19 |
|
|
|
20 |
``` |
|
|
21 |
|
|
|
22 |
# Read data, functions and packages |
|
|
23 |
```{r read data} |
|
|
24 |
|
|
|
25 |
source("R/ReadPackages.R") |
|
|
26 |
source("R/Functions.R") |
|
|
27 |
source("R/ReadData.R") |
|
|
28 |
source("R/ThemesColors.R") |
|
|
29 |
source("R/Helpers.R") |
|
|
30 |
|
|
|
31 |
``` |
|
|
32 |
|
|
|
33 |
# Proportions overview |
|
|
34 |
## Handle data and calculate p values |
|
|
35 |
```{r create matrix} |
|
|
36 |
|
|
|
37 |
df_pop |
|
|
38 |
|
|
|
39 |
mat_complete <- rbind( |
|
|
40 |
df_facs %>% |
|
|
41 |
left_join(., df_meta %>% select(PatientID, `CITEseq`)) %>% |
|
|
42 |
filter(`CITEseq`=="-") %>% |
|
|
43 |
select(PatientID, Population, Prop=FACS), |
|
|
44 |
df_freq %>% |
|
|
45 |
mutate(RNA=ifelse(is.nan(RNA), 0, RNA)) %>% |
|
|
46 |
select(PatientID, Population, Prop=RNA)) %>% |
|
|
47 |
filter(Population %in% df_pop$Population) %>% |
|
|
48 |
left_join(., df_pop) %>% |
|
|
49 |
select(-Population) %>% |
|
|
50 |
pivot_wider(names_from = "IdentI", values_from = "Prop", values_fill = 0) %>% |
|
|
51 |
column_to_rownames("PatientID") |
|
|
52 |
|
|
|
53 |
cl_order <- c(6,1,2,9,8,13,15,11,12,16,3,5,14,19) |
|
|
54 |
names(labels_cl_parsed) <- as.character(cluster_order) |
|
|
55 |
|
|
|
56 |
df_freqPlot <- |
|
|
57 |
mat_complete %>% |
|
|
58 |
rownames_to_column("PatientID") %>% |
|
|
59 |
pivot_longer(cols=2:ncol(.), names_to = "IdentI", values_to = "Prop") %>% |
|
|
60 |
add_entity() %>% |
|
|
61 |
mutate(Entity=factor(Entity, levels = c("rLN", "DLBCL", "MCL", "FL", "MZL"))) %>% |
|
|
62 |
mutate(IdentI=factor(IdentI, levels=cl_order)) %>% |
|
|
63 |
mutate(Label=factor(IdentI, levels=cl_order, labels = labels_cl_parsed[as.character(cl_order)])) %>% |
|
|
64 |
group_by(Entity, IdentI) %>% |
|
|
65 |
mutate(outlier = (Prop > quantile(Prop, 0.75) + IQR(Prop) * 1.5) | (Prop < quantile(Prop, 0.25) - IQR(Prop) * 1.5)) |
|
|
66 |
|
|
|
67 |
df_medianLines <- df_freqPlot %>% |
|
|
68 |
filter(Entity=="rLN") %>% |
|
|
69 |
group_by(IdentI, Label) %>% |
|
|
70 |
summarise(MedianProp=median(Prop)) |
|
|
71 |
|
|
|
72 |
df_freqPlot_pvalues <- |
|
|
73 |
df_freqPlot %>% |
|
|
74 |
group_by(IdentI) %>% |
|
|
75 |
wilcox_test(data=., formula = Prop ~ Entity, detailed = T, ref.group = "rLN") %>% |
|
|
76 |
adjust_pvalue(method = "BH") %>% |
|
|
77 |
select(IdentI, Entity=group2, p.adj, estimate) %>% |
|
|
78 |
mutate(Entity=factor(Entity, levels = c("rLN", "DLBCL", "MCL", "FL", "MZL"))) %>% |
|
|
79 |
mutate(p.adj=ifelse(p.adj>0.05, NA, p.adj)) %>% |
|
|
80 |
mutate(p.adj_s=format(p.adj, scientific = TRUE, digits=1)) %>% |
|
|
81 |
mutate(p.adj_f=case_when(p.adj > 0.05 ~ "NA", |
|
|
82 |
p.adj==0.05 ~ "0.05", |
|
|
83 |
p.adj < 0.05 & p.adj > 0.001 ~ as.character(round(p.adj, 3)), |
|
|
84 |
p.adj==0.001 ~ "0.001", |
|
|
85 |
p.adj < 0.001 ~ p.adj_s)) %>% |
|
|
86 |
filter(!is.na(p.adj)) %>% |
|
|
87 |
left_join(., df_freqPlot %>% select(IdentI, Label) %>% distinct) %>% |
|
|
88 |
left_join(., data.frame(IdentI=factor(cl_order), height=c(52.5, 52.5, 21.5, 21.5, 22, 22, 20, 20, 26, 26, 80, 80, 21, 21))) |
|
|
89 |
|
|
|
90 |
``` |
|
|
91 |
|
|
|
92 |
## Plot |
|
|
93 |
```{r freq overview, fig.height=13, fig.width=5.2} |
|
|
94 |
|
|
|
95 |
p <- list() |
|
|
96 |
|
|
|
97 |
for(i in c(1:7)){ |
|
|
98 |
|
|
|
99 |
y <- list(c(1,6),c(2,9),c(8,13),c(15,11),c(12,16),c(3,5),c(14,19))[[i]] |
|
|
100 |
ylim <- c(70,30,32,28,35,110,28) |
|
|
101 |
|
|
|
102 |
p[[i]] <- |
|
|
103 |
ggplot(data=df_freqPlot %>% filter(IdentI %in% y) %>% |
|
|
104 |
mutate(Label=factor(Label, levels = labels_cl_parsed[as.character(y)])), |
|
|
105 |
aes(y=Prop, x=Entity, fill=IdentI))+ |
|
|
106 |
geom_hline(data=df_medianLines %>%filter(IdentI %in% y), aes(yintercept=MedianProp), |
|
|
107 |
size=0.25, linetype="dashed", color="grey60")+ |
|
|
108 |
geom_boxplot(width=0.4, outlier.shape = 21, outlier.size = 1, outlier.color = "white", |
|
|
109 |
outlier.alpha = 0, show.legend = F, size=0.25)+ |
|
|
110 |
ggbeeswarm::geom_beeswarm(data = function(x) dplyr::filter_(x, ~ outlier), cex = 3, stroke=0.25, |
|
|
111 |
groupOnX = TRUE, shape = 21, size = 1, color = "white", alpha = 1)+ |
|
|
112 |
geom_text(data=df_freqPlot_pvalues %>% filter(IdentI %in% y), |
|
|
113 |
inherit.aes = F, aes(y=height, x=Entity, label=p.adj_f), hjust=0.1, size=2.3, angle=45)+ |
|
|
114 |
scale_fill_manual(values = colors_umap_cl)+ |
|
|
115 |
scale_y_continuous(name="% of total T-cells", limits=c(0,ylim[i]))+ |
|
|
116 |
scale_x_discrete(expand = c(0.17,0.17))+ |
|
|
117 |
facet_wrap(~Label, ncol = 2, labeller = label_parsed)+ |
|
|
118 |
mytheme_1+ |
|
|
119 |
theme(axis.title.x = element_blank(), |
|
|
120 |
strip.background = element_rect(color=NA), |
|
|
121 |
plot.margin = unit(c(0,0,0,0), units = "cm"), |
|
|
122 |
plot.title = element_text(margin = unit(c(0,0,0,0), units = "cm")), |
|
|
123 |
panel.border = element_rect(size = 0.5), |
|
|
124 |
axis.text.x = element_text(angle=45, hjust = 1)) |
|
|
125 |
|
|
|
126 |
if(i!=7){ |
|
|
127 |
p[[i]] <- p[[i]]+ |
|
|
128 |
theme(axis.text.x = element_blank(), |
|
|
129 |
axis.ticks.x = element_blank()) |
|
|
130 |
} |
|
|
131 |
|
|
|
132 |
if(i!=4){ |
|
|
133 |
p[[i]] <- p[[i]]+ |
|
|
134 |
theme(axis.title.y = element_blank()) |
|
|
135 |
} |
|
|
136 |
|
|
|
137 |
if(i==1){ |
|
|
138 |
p[[i]] <- p[[i]]+ |
|
|
139 |
labs(tag = "A")+ |
|
|
140 |
theme(plot.tag = element_text(vjust = -0.5)) |
|
|
141 |
} |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
} |
|
|
145 |
|
|
|
146 |
plot_freq <- wrap_plots(p, ncol = 1) |
|
|
147 |
plot_freq |
|
|
148 |
ggsave(width = 9, height = 21, units = "cm", filename = "Figure3_p1.pdf") |
|
|
149 |
|
|
|
150 |
``` |
|
|
151 |
|
|
|
152 |
# Principal component analysis (PCA) |
|
|
153 |
```{r pca, fig.width=6, fig.height=4} |
|
|
154 |
|
|
|
155 |
pca_seq <- prcomp(mat_complete, scale. = T, center = T) |
|
|
156 |
|
|
|
157 |
p1 <- |
|
|
158 |
pca_seq$x %>% |
|
|
159 |
data.frame() %>% |
|
|
160 |
rownames_to_column("PatientID") %>% |
|
|
161 |
add_entity() %>% |
|
|
162 |
ggplot(aes(x=PC1, y=-PC2, fill=Entity))+ |
|
|
163 |
geom_point(size=1.75, shape=21, stroke=0.25, color="white")+ |
|
|
164 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
165 |
guides(fill=guide_legend(override.aes = list(size=2)))+ |
|
|
166 |
ylab("PC2")+ |
|
|
167 |
xlab("PC1")+ |
|
|
168 |
mytheme_1+ |
|
|
169 |
coord_cartesian(clip = "off")+ |
|
|
170 |
theme(legend.position = "top", |
|
|
171 |
legend.title = element_blank(), |
|
|
172 |
legend.spacing.x = unit("cm", x = 0.05), |
|
|
173 |
legend.box.margin = unit(c(0,0,-0.35,0), "cm"), |
|
|
174 |
plot.tag = element_text(vjust = -2.5), |
|
|
175 |
plot.margin = unit(c(0,0.25,0,-0.25), units = "cm"), |
|
|
176 |
plot.background = element_rect(fill = "transparent", |
|
|
177 |
colour = NA_character_), |
|
|
178 |
panel.border = element_rect(size=0.25), |
|
|
179 |
legend.key.height = unit("cm", x = 0.36), |
|
|
180 |
axis.title.x = element_text(margin = unit(c(-1,0,0,0), units = "cm")), |
|
|
181 |
legend.key.width = unit("cm", x = 0.26))+ |
|
|
182 |
labs(tag = "B") |
|
|
183 |
|
|
|
184 |
pc1 <- |
|
|
185 |
pca_seq$rotation %>% |
|
|
186 |
data.frame %>% |
|
|
187 |
select(PC1) %>% |
|
|
188 |
rownames_to_column("IdentI") %>% |
|
|
189 |
top_n(4, abs(PC1)) %>% |
|
|
190 |
arrange(-PC1) |
|
|
191 |
|
|
|
192 |
p2 <- ggplot(pc1, aes(y=PC1, x=IdentI, fill=IdentI))+ |
|
|
193 |
geom_bar(stat = "identity", width = 0.4, color=NA, alpha=0.5)+ |
|
|
194 |
scale_fill_manual(values = colors_umap_cl, limits=factor(cluster_order), |
|
|
195 |
labels=unlist(labels_cl))+ |
|
|
196 |
scale_x_discrete(limits=pc1$IdentI, labels=labels_cl[pc1$IdentI] %>% unlist())+ |
|
|
197 |
geom_hline(yintercept = 0, size=0.25)+ |
|
|
198 |
scale_y_continuous(limits=c(-0.5, 0.5), breaks = c(-0.5, 0, 0.5), name = "PC1")+ |
|
|
199 |
mytheme_1+ |
|
|
200 |
coord_cartesian(clip = "off")+ |
|
|
201 |
theme(axis.title.x = element_blank(), |
|
|
202 |
plot.margin = unit(c(0.25,0,0,0), units = "cm"), |
|
|
203 |
axis.text = element_text(size=6.5), |
|
|
204 |
plot.tag = element_text(vjust = -2.5), |
|
|
205 |
axis.text.x = element_text(angle=45, hjust = 1))+ |
|
|
206 |
labs(tag = "C") |
|
|
207 |
|
|
|
208 |
pc2 <- pca_seq$rotation %>% |
|
|
209 |
data.frame %>% |
|
|
210 |
select(PC2) %>% |
|
|
211 |
rownames_to_column("IdentI") %>% |
|
|
212 |
top_n(4, abs(PC2)) %>% |
|
|
213 |
arrange(PC2) |
|
|
214 |
|
|
|
215 |
p3 <- ggplot(pc2, aes(y=-PC2, x=IdentI, fill=IdentI))+ |
|
|
216 |
geom_bar(stat = "identity", width = 0.4, color=NA, alpha=0.5)+ |
|
|
217 |
scale_fill_manual(values = colors_umap_cl, limits=factor(cluster_order), |
|
|
218 |
labels=unlist(labels_cl))+ |
|
|
219 |
scale_x_discrete(limits=pc2$IdentI, labels=labels_cl[pc2$IdentI] %>% unlist())+ |
|
|
220 |
geom_hline(yintercept = 0, size=0.25)+ |
|
|
221 |
scale_y_continuous(limits=c(-0.5, 0.5), breaks = c(-0.5, 0, 0.5), name = "PC2")+ |
|
|
222 |
coord_cartesian(clip = "off")+ |
|
|
223 |
mytheme_1+ |
|
|
224 |
theme(axis.title.x = element_blank(), |
|
|
225 |
plot.margin = unit(c(0,0,0.25,0), units = "cm"), |
|
|
226 |
axis.text.x = element_text(angle=45, hjust = 1))+ |
|
|
227 |
labs(tag = "D") |
|
|
228 |
|
|
|
229 |
p1+(p2/p3)+plot_layout(widths = c(1,0.5)) |
|
|
230 |
#ggsave(width = 9.75, height = 7.5, units = "cm", filename = "Figure3_p2.pdf") |
|
|
231 |
|
|
|
232 |
``` |
|
|
233 |
|
|
|
234 |
# Lasso prediction |
|
|
235 |
## Dendrogram |
|
|
236 |
```{r dendrogram, fig.width=3, fig.height=3} |
|
|
237 |
|
|
|
238 |
# Create data frame |
|
|
239 |
data <- data.frame( |
|
|
240 |
level1="all", |
|
|
241 |
level2=c("rLN", |
|
|
242 |
"MZL", |
|
|
243 |
"MCL", |
|
|
244 |
"FL", |
|
|
245 |
"DLBCL") |
|
|
246 |
) |
|
|
247 |
|
|
|
248 |
edges_level1_2 <- data %>% select(level1, level2) %>% unique %>% rename(from=level1, to=level2) |
|
|
249 |
edge_list=rbind(edges_level1_2) |
|
|
250 |
vert <- data.frame( |
|
|
251 |
name=unique(c(data$level1, data$level2))) %>% |
|
|
252 |
mutate(label=c(NA, "rLN", "MZL", "MCL", "FL", "DLBCL")) |
|
|
253 |
|
|
|
254 |
# Create graph object |
|
|
255 |
mygraph_lasso <- graph_from_data_frame( edge_list ,vertices = vert) |
|
|
256 |
|
|
|
257 |
# Plot dendrogramm |
|
|
258 |
ggraph(mygraph_lasso, layout = 'tree', circular = FALSE)+ |
|
|
259 |
geom_edge_diagonal(strength = 1.4, edge_width=0.25)+ |
|
|
260 |
geom_node_point(shape=21, size=3.5, color="white", stroke=2, alpha=c(0,1,1,1,1,1), |
|
|
261 |
fill=c(NA, brewer.pal(name = "Paired", 5)[c(5,4,3,2,1)]))+ |
|
|
262 |
coord_flip(clip = "off")+ |
|
|
263 |
scale_y_reverse()+ |
|
|
264 |
theme_void()+ |
|
|
265 |
theme(legend.position = "right", |
|
|
266 |
plot.margin = margin(0.25,0.25,0.25,0, unit = "cm"), |
|
|
267 |
plot.title = element_text(hjust=0.4, size=7, face = "bold"),) |
|
|
268 |
|
|
|
269 |
#ggsave(width = 3.5, height = 3.4, units = "cm", filename = "Figure3_p3.pdf") |
|
|
270 |
|
|
|
271 |
``` |
|
|
272 |
|
|
|
273 |
## Model |
|
|
274 |
```{r lasso model, fig.height=3, fig.width=3} |
|
|
275 |
|
|
|
276 |
total <- mat_complete %>% |
|
|
277 |
rownames_to_column("PatientID") %>% |
|
|
278 |
left_join(., df_meta %>% select(PatientID, Tcells)) %>% |
|
|
279 |
add_entity() %>% |
|
|
280 |
mutate_if(is.numeric, ~./100) |
|
|
281 |
|
|
|
282 |
cell_types <- total %>% select(-Entity, -PatientID) %>% colnames() |
|
|
283 |
gt <- my_glmnet(total) |
|
|
284 |
|
|
|
285 |
``` |
|
|
286 |
|
|
|
287 |
## Confusion matrix |
|
|
288 |
```{r lasso plot, fig.height=3, fig.width=3} |
|
|
289 |
|
|
|
290 |
entities <- c("DLBCL", "MCL", "FL", "MZL", "rLN") |
|
|
291 |
|
|
|
292 |
tbl <- gt$confusion_table |
|
|
293 |
class(tbl) = "matrix" |
|
|
294 |
tbl = tbl / rowSums(tbl) # convert to probability estimates |
|
|
295 |
tbl = tbl[entities, entities] |
|
|
296 |
|
|
|
297 |
tbl %>% data.frame() %>% |
|
|
298 |
rownames_to_column("truth") %>% |
|
|
299 |
pivot_longer(cols = 2:ncol(.), names_to = "predicted", values_to = "Prop") %>% |
|
|
300 |
ggplot(aes(x=truth, y=predicted, fill=Prop))+ |
|
|
301 |
geom_tile()+ |
|
|
302 |
scale_x_discrete(limits=rev(entities), expand = c(0,0), position = "top")+ |
|
|
303 |
scale_y_discrete(limits=entities, expand = c(0,0), name="Truth")+ |
|
|
304 |
geom_hline(yintercept = c(1.5,2.5,3.5,4.5),size=0.25, color="black")+ |
|
|
305 |
geom_vline(xintercept = c(1.5,2.5,3.5,4.5),size=0.25, color="black")+ |
|
|
306 |
scale_fill_gradientn(colours = colorRampPalette(RColorBrewer::brewer.pal(9, "BuPu"))(100), name="Prop", limits=c(0,0.8))+ |
|
|
307 |
xlab("Reference")+ |
|
|
308 |
mytheme_1+ |
|
|
309 |
coord_fixed()+ |
|
|
310 |
theme(panel.border = element_blank(), |
|
|
311 |
legend.position = "right", |
|
|
312 |
legend.key.height = unit(0.3, "cm"), |
|
|
313 |
legend.key.width = unit(0.3, "cm"), |
|
|
314 |
legend.box.spacing = unit(0.1, "cm"), |
|
|
315 |
legend.box.margin = unit(c(0,-0.25,0,0.05), units = "cm"), |
|
|
316 |
plot.margin = unit(c(0.1,0.1,0.1,0.1), units = "cm"), |
|
|
317 |
axis.text.x = element_text(angle=45, hjust = 0), |
|
|
318 |
axis.ticks = element_blank(), |
|
|
319 |
axis.title.y = element_blank()) |
|
|
320 |
|
|
|
321 |
#ggsave(width = 5.5, height = 5.5, units = "cm", filename = "Figure3_p4.pdf") |
|
|
322 |
|
|
|
323 |
``` |
|
|
324 |
|
|
|
325 |
# Patient characteristics |
|
|
326 |
```{r Patient characteristics, fig.width=5.25} |
|
|
327 |
|
|
|
328 |
df_char <- mat_complete %>% |
|
|
329 |
rownames_to_column("PatientID") %>% |
|
|
330 |
pivot_longer(cols=2:ncol(.), names_to = "IdentI", values_to = "Prop") %>% |
|
|
331 |
left_join(., df_meta %>% select(PatientID, Status, Pretreatment, Entity, Age) %>% distinct, by="PatientID") %>% |
|
|
332 |
mutate(Entity=factor(Entity, levels = c("DLBCL", "MCL", "FL", "MZL", "rLN"))) |
|
|
333 |
|
|
|
334 |
plot_status_ident1 <- |
|
|
335 |
df_char %>% |
|
|
336 |
filter(IdentI %in% c(1), Entity!="rLN") %>% |
|
|
337 |
ggplot(aes(x=Status, y=Prop))+ |
|
|
338 |
geom_boxplot(width=0.35, size=0.25, aes(fill=Entity), position = position_dodge(width = 0.6), |
|
|
339 |
outlier.shape = 21, outlier.size = 1, outlier.color = "white", outlier.alpha = 0.75)+ |
|
|
340 |
stat_compare_means(comparisons = list(c("Initial diagnosis", "Relapse")), vjust = -0.35, label.y = c(28), |
|
|
341 |
size=2.5, tip.length = 0.02, bracket.size = 0.25)+ |
|
|
342 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
343 |
ggtitle(labels_cl[["1"]])+ |
|
|
344 |
scale_y_continuous(name="% of total T-cells", expand = c(0.05,0.15), limits=c(0,35))+ |
|
|
345 |
scale_x_discrete(labels=c("Initial \ndiagnosis", "Relapse"))+ |
|
|
346 |
mytheme_1+ |
|
|
347 |
theme_characteristics+ |
|
|
348 |
labs(tag = "F") |
|
|
349 |
|
|
|
350 |
plot_age_ident1 <- |
|
|
351 |
df_char %>% |
|
|
352 |
filter(IdentI %in% c(1), Entity!="rLN") %>% |
|
|
353 |
ggplot(aes(x=Age, y=Prop))+ |
|
|
354 |
geom_point(size=1.25, color="grey65", shape=21, stroke=0, aes(fill=Entity))+ |
|
|
355 |
geom_smooth(method = "lm", color="black", size=0.25, linetype="dashed", alpha=0.25, formula = 'y ~ x')+ |
|
|
356 |
stat_cor(size=2.5)+ |
|
|
357 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
358 |
scale_y_continuous(name="% of total T-cells", expand = c(0.05,0.15), limits=c(0,35))+ |
|
|
359 |
ggtitle(labels_cl[["1"]])+ |
|
|
360 |
mytheme_1+ |
|
|
361 |
theme_characteristics+ |
|
|
362 |
theme(axis.title.x = element_text(size=7, vjust = 4))+ |
|
|
363 |
labs(tag = "G") |
|
|
364 |
|
|
|
365 |
plot_status_ident9 <- |
|
|
366 |
df_char %>% |
|
|
367 |
filter(IdentI %in% c(9), Entity!="rLN") %>% |
|
|
368 |
ggplot(aes(x=Status, y=Prop))+ |
|
|
369 |
geom_boxplot(width=0.35, size=0.25, aes(fill=Entity), position = position_dodge(width = 0.6), |
|
|
370 |
outlier.shape = 21, outlier.size = 1, outlier.color = "white", outlier.alpha = 0.75)+ |
|
|
371 |
stat_compare_means(comparisons = list(c("Initial diagnosis", "Relapse")), vjust = -0.35, label.y = c(28), |
|
|
372 |
size=2.5, tip.length = 0.02, bracket.size = 0.25)+ |
|
|
373 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
374 |
ggtitle(labels_cl[["9"]])+ |
|
|
375 |
scale_y_continuous(name="% of total T-cells", expand = c(0.05,0.15), limits=c(0,35))+ |
|
|
376 |
scale_x_discrete(labels=c("Initial \ndiagnosis", "Relapse"))+ |
|
|
377 |
mytheme_1+ |
|
|
378 |
theme_characteristics+ |
|
|
379 |
labs(tag = "H") |
|
|
380 |
|
|
|
381 |
plot_status_ident13 <- |
|
|
382 |
df_char %>% |
|
|
383 |
filter(IdentI %in% c(13), Entity!="rLN") %>% |
|
|
384 |
ggplot(aes(x=Status, y=Prop))+ |
|
|
385 |
geom_boxplot(width=0.35, size=0.25, aes(fill=Entity), position = position_dodge(width = 0.6), |
|
|
386 |
outlier.shape = 21, outlier.size = 1, outlier.color = "white", outlier.alpha = 0.75)+ |
|
|
387 |
stat_compare_means(comparisons = list(c("Initial diagnosis", "Relapse")), vjust = -0.35, label.y = c(29), |
|
|
388 |
size=2.5, tip.length = 0.02, bracket.size = 0.25)+ |
|
|
389 |
scale_fill_brewer(palette = "Paired", limits=c("DLBCL", "MCL", "FL", "MZL", "rLN"))+ |
|
|
390 |
ggtitle(labels_cl[["13"]])+ |
|
|
391 |
scale_y_continuous(name="% of total T-cells", expand = c(0.05,0.15), limits=c(0,35))+ |
|
|
392 |
scale_x_discrete(labels=c("Initial \ndiagnosis", "Relapse"))+ |
|
|
393 |
mytheme_1+ |
|
|
394 |
theme_characteristics+ |
|
|
395 |
labs(tag = "I") |
|
|
396 |
|
|
|
397 |
plot_status_ident1+plot_age_ident1+plot_status_ident9+plot_status_ident13 |
|
|
398 |
|
|
|
399 |
#ggsave(width = 9.5, height = 9.65, units = "cm", filename = "Figure3_p5.pdf") |
|
|
400 |
|
|
|
401 |
``` |
|
|
402 |
|
|
|
403 |
# Session info |
|
|
404 |
```{r session info} |
|
|
405 |
|
|
|
406 |
sessionInfo() |
|
|
407 |
|
|
|
408 |
``` |