|
a |
|
b/analysis/IntegrateTcells.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "Integrate T cells" |
|
|
3 |
author: Tobias Roider |
|
|
4 |
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" |
|
|
5 |
output: |
|
|
6 |
|
|
|
7 |
rmdformats::readthedown: |
|
|
8 |
editor_options: |
|
|
9 |
chunk_output_type: console |
|
|
10 |
--- |
|
|
11 |
|
|
|
12 |
```{r options, include=FALSE, warning = FALSE} |
|
|
13 |
|
|
|
14 |
library(knitr) |
|
|
15 |
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, |
|
|
16 |
dpi = 100, cache = FALSE, warning = FALSE) |
|
|
17 |
opts_knit$set(root.dir = "../") |
|
|
18 |
options(bitmapType = "cairo") |
|
|
19 |
|
|
|
20 |
``` |
|
|
21 |
|
|
|
22 |
# Functions and packages |
|
|
23 |
```{r read data} |
|
|
24 |
|
|
|
25 |
require(future) |
|
|
26 |
require(future.apply) |
|
|
27 |
source("R/ReadPackages.R") |
|
|
28 |
source("R/Functions.R") |
|
|
29 |
source("R/ThemesColors.R") |
|
|
30 |
#source("R/Helpers.R") |
|
|
31 |
|
|
|
32 |
``` |
|
|
33 |
|
|
|
34 |
# Read meta data |
|
|
35 |
```{r read meta} |
|
|
36 |
|
|
|
37 |
df_meta <- read.csv("data/metaData.csv", sep = ",") %>% |
|
|
38 |
filter(!is.na(Run)) |
|
|
39 |
|
|
|
40 |
df_meta %>% select(PatientID, Entity, Run) %>% |
|
|
41 |
DT::datatable(., options = list(pageLength = 5, autoWidth = TRUE)) |
|
|
42 |
|
|
|
43 |
``` |
|
|
44 |
|
|
|
45 |
## Read count tables |
|
|
46 |
```{r read count} |
|
|
47 |
|
|
|
48 |
sobjs_T <- lapply(df_meta$PatientID, function(x){ |
|
|
49 |
|
|
|
50 |
# Read count matrices |
|
|
51 |
rna <- read.delim(paste0("countMatrices/", x, "_Tcells_3'RNA.txt"), sep = " ") |
|
|
52 |
adt <- read.delim(paste0("countMatrices/", x, "_Tcells_ADT.txt"), sep = " ") |
|
|
53 |
|
|
|
54 |
# Create Seurat Object |
|
|
55 |
sobj <- CreateSeuratObject(counts = rna) |
|
|
56 |
|
|
|
57 |
# Add ADT data |
|
|
58 |
sobj[["ADT"]] <- CreateAssayObject(counts = adt) |
|
|
59 |
DefaultAssay(sobj) <- "RNA" |
|
|
60 |
|
|
|
61 |
# Add Percentage of mitochondrial genes and some meta data |
|
|
62 |
sobj$percent.mt <- PercentageFeatureSet(sobj, pattern = "^MT-") |
|
|
63 |
sobj$Barcode_full <- colnames(sobj) |
|
|
64 |
sobj$PatientID <- x |
|
|
65 |
|
|
|
66 |
meta_tmp <- df_meta %>% filter(PatientID==x) |
|
|
67 |
|
|
|
68 |
# Add more meta data |
|
|
69 |
sobj$Entity <- meta_tmp$Entity |
|
|
70 |
sobj$Subtype <- meta_tmp$Subtype |
|
|
71 |
sobj$Age <- meta_tmp$Age |
|
|
72 |
sobj$Sex <- meta_tmp$Sex |
|
|
73 |
sobj$Status <- meta_tmp$Status |
|
|
74 |
sobj$Run <- meta_tmp$Run |
|
|
75 |
|
|
|
76 |
return(sobj) |
|
|
77 |
|
|
|
78 |
}) %>% `names<-`(df_meta$PatientID) |
|
|
79 |
|
|
|
80 |
``` |
|
|
81 |
|
|
|
82 |
## Process CITE-seq data |
|
|
83 |
```{r process} |
|
|
84 |
|
|
|
85 |
sobjs_T <- lapply(sobjs_T, function(sobj){ |
|
|
86 |
|
|
|
87 |
# Please note that low quality cells (e.g. high mito counts), doublets, |
|
|
88 |
# and non T-cells were already filtered and are not contained in the provided count matrices. |
|
|
89 |
# Thus further filtering is not necessary here. |
|
|
90 |
# In case you need unfiltered raw data, please contact tobias.roider@embl.de |
|
|
91 |
|
|
|
92 |
# Normalize data |
|
|
93 |
sobj <- NormalizeData(sobj, normalization.method = "LogNormalize", scale.factor = 10000) |
|
|
94 |
|
|
|
95 |
# Run Seurat Processing |
|
|
96 |
sobj <- SeuratProc_T(sobj, verbose=FALSE, |
|
|
97 |
dims.clustering=1:14, |
|
|
98 |
resolution.clustering = 0.4, |
|
|
99 |
dims.umap=1:13) |
|
|
100 |
|
|
|
101 |
# Run Processing for ADT data |
|
|
102 |
DefaultAssay(sobj) <- "ADT" |
|
|
103 |
sobj <- NormalizeData(sobj, assay = "ADT", normalization.method = "CLR") |
|
|
104 |
|
|
|
105 |
# Run Seurat Processing for ADT part |
|
|
106 |
sobj <- SeuratProcADT_T(sobj, verbose=FALSE, |
|
|
107 |
dims.clustering=1:14, |
|
|
108 |
resolution.clustering = 0.4, |
|
|
109 |
dims.umap=1:13) |
|
|
110 |
|
|
|
111 |
DefaultAssay(sobj) <- "RNA" |
|
|
112 |
Idents(sobj) <- "RNA_snn_res.0.4" |
|
|
113 |
|
|
|
114 |
return(sobj) |
|
|
115 |
|
|
|
116 |
}) |
|
|
117 |
|
|
|
118 |
``` |
|
|
119 |
|
|
|
120 |
# Integrate data |
|
|
121 |
## Merge data |
|
|
122 |
```{r merge} |
|
|
123 |
|
|
|
124 |
# Merge objects |
|
|
125 |
for(i in 1:length(sobjs_T)) { |
|
|
126 |
if(i==1){ |
|
|
127 |
Combined_T <- merge(sobjs_T[[1]], sobjs_T[[2]]) |
|
|
128 |
} |
|
|
129 |
if(i>2){ |
|
|
130 |
Combined_T <- merge(Combined_T, sobjs_T[[i]]) |
|
|
131 |
} |
|
|
132 |
} |
|
|
133 |
|
|
|
134 |
``` |
|
|
135 |
|
|
|
136 |
## Split objects by run |
|
|
137 |
```{r split} |
|
|
138 |
|
|
|
139 |
# Split objects again by run to account for most important batch factor |
|
|
140 |
splitted_objects <- SplitObject(Combined_T, split.by = "Run") |
|
|
141 |
|
|
|
142 |
``` |
|
|
143 |
|
|
|
144 |
## Integrate RNA |
|
|
145 |
### Find anchors and integrate data |
|
|
146 |
```{r anchors rna} |
|
|
147 |
|
|
|
148 |
anchors <- FindIntegrationAnchors(object.list = splitted_objects, |
|
|
149 |
dims = 1:20, |
|
|
150 |
assay = rep("RNA", length(splitted_objects))) |
|
|
151 |
|
|
|
152 |
Combined_T <- IntegrateData(anchorset = anchors, |
|
|
153 |
new.assay.name = "integratedRNA") |
|
|
154 |
|
|
|
155 |
DefaultAssay(Combined_T) <- "integratedRNA" |
|
|
156 |
|
|
|
157 |
``` |
|
|
158 |
|
|
|
159 |
### Standard workflow for integrated object |
|
|
160 |
```{r workflow rna} |
|
|
161 |
|
|
|
162 |
Combined_T <- ScaleData(Combined_T) |
|
|
163 |
Combined_T <- RunPCA(Combined_T, |
|
|
164 |
reduction.name = "pcaRNA", reduction.key = "pcaRNA_") |
|
|
165 |
|
|
|
166 |
Combined_T <- RunUMAP(Combined_T, dims = 1:20, reduction.key = "umapRNA_", |
|
|
167 |
reduction.name = "umapRNA", reduction = "pcaRNA") |
|
|
168 |
|
|
|
169 |
Combined_T <- FindNeighbors(Combined_T, reduction = "pcaRNA", dims = 1:20) |
|
|
170 |
Combined_T <- FindClusters(Combined_T, resolution = 0.6) |
|
|
171 |
|
|
|
172 |
``` |
|
|
173 |
|
|
|
174 |
### Visualization |
|
|
175 |
#### Cluster |
|
|
176 |
```{r vis cluster rna, fig.height=5, fig.width=5.5} |
|
|
177 |
|
|
|
178 |
DimPlot(Combined_T, reduction = "umapRNA", label = T, raster = T)+ |
|
|
179 |
NoLegend() |
|
|
180 |
|
|
|
181 |
``` |
|
|
182 |
|
|
|
183 |
#### PatientID |
|
|
184 |
```{r vis cluster pat, include=F, eval=F} |
|
|
185 |
|
|
|
186 |
DimPlot(Combined_T, reduction = "umapRNA", label = F, raster = T, group.by = "PatientID")+ |
|
|
187 |
NoLegend() |
|
|
188 |
|
|
|
189 |
``` |
|
|
190 |
|
|
|
191 |
#### Run |
|
|
192 |
```{r vis run run, include=F, eval=F} |
|
|
193 |
|
|
|
194 |
DimPlot(Combined_T, reduction = "umapRNA", label = F, raster = T, group.by = "Run")+ |
|
|
195 |
NoLegend() |
|
|
196 |
|
|
|
197 |
``` |
|
|
198 |
|
|
|
199 |
## Integrate ADT |
|
|
200 |
### Find anchors and integrate data |
|
|
201 |
```{r anchors adt} |
|
|
202 |
|
|
|
203 |
anchors <- FindIntegrationAnchors(object.list = splitted_objects, |
|
|
204 |
dims = 1:20, |
|
|
205 |
assay = rep("ADT", length(splitted_objects))) |
|
|
206 |
|
|
|
207 |
Combined_T_ADT <- IntegrateData(anchorset = anchors, |
|
|
208 |
new.assay.name = "integratedADT") |
|
|
209 |
|
|
|
210 |
Combined_T[["integratedADT"]] <- Combined_T_ADT[["integratedADT"]] |
|
|
211 |
|
|
|
212 |
``` |
|
|
213 |
|
|
|
214 |
### Standard workflow for integrated object |
|
|
215 |
```{r workflow adt} |
|
|
216 |
|
|
|
217 |
DefaultAssay(Combined_T) <- "integratedADT" |
|
|
218 |
|
|
|
219 |
# Run the standard workflow for visualization and clustering |
|
|
220 |
Combined_T <- ScaleData(Combined_T) |
|
|
221 |
Combined_T <- RunPCA(Combined_T, npcs = 30, nfeatures.print = 5, |
|
|
222 |
reduction.name = "pcaADT", reduction.key = "pcaADT_") |
|
|
223 |
|
|
|
224 |
Combined_T <- RunUMAP(Combined_T, reduction = "pcaADT", dims = 1:20, |
|
|
225 |
reduction.name = "umapADT", |
|
|
226 |
reduction.key = "umapADT_") |
|
|
227 |
|
|
|
228 |
Combined_T <- FindNeighbors(Combined_T, reduction = "pcaADT", dims = 1:20) |
|
|
229 |
Combined_T <- FindClusters(Combined_T, resolution = 0.4) |
|
|
230 |
|
|
|
231 |
``` |
|
|
232 |
|
|
|
233 |
### Visualization |
|
|
234 |
#### Cluster |
|
|
235 |
```{r vis cluster adt, fig.height=5, fig.width=5.5} |
|
|
236 |
|
|
|
237 |
DimPlot(Combined_T, reduction = "umapADT", label = TRUE, raster = T)+NoLegend() |
|
|
238 |
|
|
|
239 |
``` |
|
|
240 |
|
|
|
241 |
#### PatientID |
|
|
242 |
```{r vis pat adt, include=F, eval=F} |
|
|
243 |
|
|
|
244 |
DimPlot(Combined_T, reduction = "umapADT", label = FALSE, raster = T, |
|
|
245 |
group.by = "PatientID")+NoLegend() |
|
|
246 |
|
|
|
247 |
``` |
|
|
248 |
|
|
|
249 |
#### Run |
|
|
250 |
```{r vis run adt, include=F, eval=F} |
|
|
251 |
|
|
|
252 |
DimPlot(Combined_T, reduction = "umapADT", label = FALSE, raster = T, |
|
|
253 |
group.by = "Run")+NoLegend() |
|
|
254 |
|
|
|
255 |
``` |
|
|
256 |
|
|
|
257 |
# Identify and refine clusters |
|
|
258 |
## Repeat clutering with higher resolution |
|
|
259 |
```{r clustering high res, fig.height=5, fig.width=5.5} |
|
|
260 |
|
|
|
261 |
DefaultAssay(Combined_T) <- "integratedRNA" |
|
|
262 |
Combined_T <- FindClusters(Combined_T, resolution = 1.4) |
|
|
263 |
DimPlot(Combined_T, reduction = "umapRNA", label = T, raster = T, |
|
|
264 |
group.by = "integratedRNA_snn_res.1.4")+NoLegend() |
|
|
265 |
|
|
|
266 |
Idents(Combined_T) <- "integratedRNA_snn_res.1.4" |
|
|
267 |
|
|
|
268 |
``` |
|
|
269 |
|
|
|
270 |
# Identify clusters |
|
|
271 |
## Find Markers |
|
|
272 |
```{r identify markers} |
|
|
273 |
|
|
|
274 |
Idents(Combined_T) <- "integratedRNA_snn_res.1.4" |
|
|
275 |
|
|
|
276 |
clusters <- paste0("cluster_", 0:(length(unique(Idents(Combined_T)))-1)) |
|
|
277 |
|
|
|
278 |
# Marker |
|
|
279 |
markers_rna <- lapply(clusters, function(x){ |
|
|
280 |
z <- as.numeric(gsub(x, pattern = "cluster_", replacement = "")) |
|
|
281 |
|
|
|
282 |
df_mark <- FindMarkers(Combined_T, ident.1 = z, assay = "integratedRNA", test.use = "roc") %>% |
|
|
283 |
mutate(avg_diff=round(avg_diff, 3), |
|
|
284 |
avg_log2FC=round(avg_log2FC, 3)) %>% |
|
|
285 |
select(-avg_diff, -pct.1, -pct.2) %>% |
|
|
286 |
rownames_to_column("Gene") |
|
|
287 |
|
|
|
288 |
return(df_mark) |
|
|
289 |
}) %>% `names<-`(clusters) %>% |
|
|
290 |
bind_rows(., .id = "Cluster") %>% |
|
|
291 |
mutate(Cluster=substr(Cluster,9,10)) |
|
|
292 |
|
|
|
293 |
# Marker |
|
|
294 |
markers_adt <- lapply(clusters, function(x){ |
|
|
295 |
z <- as.numeric(gsub(x, pattern = "cluster_", replacement = "")) |
|
|
296 |
|
|
|
297 |
df_mark <- FindMarkers(Combined_T, ident.1 = z, assay = "integratedADT", test.use = "roc") %>% |
|
|
298 |
mutate(avg_diff=round(avg_diff, 3), |
|
|
299 |
avg_log2FC=round(avg_log2FC, 3)) %>% |
|
|
300 |
select(-avg_diff, -pct.1, -pct.2) %>% |
|
|
301 |
rownames_to_column("Protein") |
|
|
302 |
|
|
|
303 |
return(df_mark) |
|
|
304 |
}) %>% `names<-`(clusters) %>% |
|
|
305 |
bind_rows(., .id = "Cluster") %>% |
|
|
306 |
mutate(Cluster=substr(Cluster,9,10)) |
|
|
307 |
|
|
|
308 |
``` |
|
|
309 |
|
|
|
310 |
### Show Markers |
|
|
311 |
#### RNA |
|
|
312 |
```{r show markers rna} |
|
|
313 |
DT::datatable(markers_rna, rownames = FALSE, filter = "top", |
|
|
314 |
options = list(pageLength = 10, autoWidth = TRUE)) |
|
|
315 |
|
|
|
316 |
|
|
|
317 |
``` |
|
|
318 |
|
|
|
319 |
#### ADT |
|
|
320 |
```{r show markers adt} |
|
|
321 |
|
|
|
322 |
DT::datatable(markers_adt, rownames = FALSE, filter = "top", |
|
|
323 |
options = list(pageLength = 10, autoWidth = TRUE)) |
|
|
324 |
|
|
|
325 |
``` |
|
|
326 |
|
|
|
327 |
# Refine object |
|
|
328 |
## Identify unwanted clusters |
|
|
329 |
```{r refine clusters} |
|
|
330 |
# Remove cluster of with levels of LYZ (--> myeloid cells) |
|
|
331 |
c1 <- markers_rna %>% filter(Gene=="LYZ", myAUC>0.8) %>% pull(Cluster) |
|
|
332 |
|
|
|
333 |
# Remove cluster with high levels of mito genes |
|
|
334 |
c2 <- markers_rna %>% group_by(Cluster) %>% |
|
|
335 |
top_n(5, myAUC) %>% |
|
|
336 |
filter(Gene=="MT-CO3") %>% |
|
|
337 |
pull(Cluster) |
|
|
338 |
|
|
|
339 |
# Remove cluster with high levels of interferon induced genes |
|
|
340 |
c3 <- markers_rna %>% group_by(Cluster) %>% |
|
|
341 |
top_n(5, myAUC) %>% |
|
|
342 |
filter(Gene=="IFI44L") %>% |
|
|
343 |
pull(Cluster) |
|
|
344 |
|
|
|
345 |
# Remove cluster with high levels of interferon induced genes |
|
|
346 |
c4 <- markers_rna %>% group_by(Cluster) %>% |
|
|
347 |
top_n(1, myAUC) %>% |
|
|
348 |
filter(Gene=="ISG15") %>% |
|
|
349 |
pull(Cluster) |
|
|
350 |
|
|
|
351 |
# Remove cluster with high levels of heat shock proteins |
|
|
352 |
c5 <- markers_rna %>% group_by(Cluster) %>% |
|
|
353 |
top_n(5, myAUC) %>% |
|
|
354 |
filter(Gene=="HSP90AB1") %>% |
|
|
355 |
pull(Cluster) |
|
|
356 |
|
|
|
357 |
clusters_keep <- setdiff(levels(Combined_T$integratedRNA_snn_res.1.4), c(c1,c2,c3,c4,c5)) |
|
|
358 |
clusters_keep |
|
|
359 |
|
|
|
360 |
``` |
|
|
361 |
|
|
|
362 |
## Subset object |
|
|
363 |
```{r subset object, fig.height=5, fig.width=5.5} |
|
|
364 |
|
|
|
365 |
Combined_T <- subset(Combined_T, idents = clusters_keep) |
|
|
366 |
DimPlot(Combined_T, label = T)+ |
|
|
367 |
NoLegend() |
|
|
368 |
|
|
|
369 |
Combined_T <- RunUMAP(Combined_T, dims = 1:30, reduction = "pcaRNA", |
|
|
370 |
reduction.name = "umapRNA", reduction.key = "umapRNA_") |
|
|
371 |
Combined_T <- FindNeighbors(Combined_T, reduction = "pcaRNA", dims = 1:20) |
|
|
372 |
Combined_T <- FindClusters(Combined_T, resolution = 1.4) |
|
|
373 |
|
|
|
374 |
DimPlot(Combined_T, label = T, group.by = "integratedRNA_snn_res.1.4", raster = T)+ |
|
|
375 |
NoLegend() |
|
|
376 |
|
|
|
377 |
Idents(Combined_T) <- "IdentI" |
|
|
378 |
|
|
|
379 |
``` |
|
|
380 |
|
|
|
381 |
# Run WNN pipeline |
|
|
382 |
```{r run wnn, fig.height=5, fig.width=5.5} |
|
|
383 |
|
|
|
384 |
Combined_T <- FindMultiModalNeighbors( |
|
|
385 |
Combined_T, reduction.list = list("pcaRNA", "pcaADT"), k.nn = 30, |
|
|
386 |
dims.list = list(1:12, 1:20), modality.weight.name = c("RNA.weight", "ADT.weight") |
|
|
387 |
) |
|
|
388 |
|
|
|
389 |
Combined_T <- RunUMAP(Combined_T, nn.name = "weighted.nn", reduction.name = "wnn.umap", |
|
|
390 |
reduction.key = "wnnUMAP_", return.model = TRUE) |
|
|
391 |
|
|
|
392 |
Combined_T <- FindClusters(Combined_T, graph.name = "wsnn", algorithm = 3, resolution = 0.7) |
|
|
393 |
|
|
|
394 |
DimPlot(Combined_T, reduction = 'wnn.umap', group.by = "wsnn_res.0.7", label = T, raster = T)+ |
|
|
395 |
NoLegend() |
|
|
396 |
|
|
|
397 |
``` |
|
|
398 |
|
|
|
399 |
# Remove singletons |
|
|
400 |
```{r remove singletons} |
|
|
401 |
|
|
|
402 |
Combined_T <- subset(Combined_T, idents = c(0:14)) |
|
|
403 |
|
|
|
404 |
``` |
|
|
405 |
|
|
|
406 |
# Re-run WNN pipeline |
|
|
407 |
```{r rerun wnn} |
|
|
408 |
|
|
|
409 |
Combined_T <- FindMultiModalNeighbors( |
|
|
410 |
Combined_T, reduction.list = list("pcaRNA", "pcaADT"), k.nn = 30, |
|
|
411 |
dims.list = list(1:15, 1:20), modality.weight.name = c("RNA.weight", "ADT.weight") |
|
|
412 |
) |
|
|
413 |
|
|
|
414 |
Combined_T <- RunUMAP(Combined_T, nn.name = "weighted.nn", reduction.name = "wnn.umap", |
|
|
415 |
reduction.key = "wnnUMAP_", return.model = TRUE) |
|
|
416 |
Combined_T <- FindClusters(Combined_T, graph.name = "wsnn", algorithm = 3, resolution = 0.7) |
|
|
417 |
|
|
|
418 |
``` |
|
|
419 |
|
|
|
420 |
# Compare with original object |
|
|
421 |
```{r compare with original, fig.height=5, fig.width=5.5} |
|
|
422 |
|
|
|
423 |
Combined_T_or <- readRDS("output/Tcells_Integrated.rds") |
|
|
424 |
DimPlot(AddMetaData(Combined_T, metadata = Idents(Combined_T_or), |
|
|
425 |
col.name = "IdentI_original"), |
|
|
426 |
reduction = 'wnn.umap', group.by = "IdentI_original", label = T, raster = T)+ |
|
|
427 |
NoLegend() |
|
|
428 |
|
|
|
429 |
``` |
|
|
430 |
|
|
|
431 |
# Save object |
|
|
432 |
```{r save, eval=F} |
|
|
433 |
|
|
|
434 |
saveRDS(Combined_T, file = "output/Tcells_Integrated.rds") |
|
|
435 |
|
|
|
436 |
# Output might slightly differ depending on the version and system you use. For exact reproduction of figures please use Seurat Object provided at HeiData. |
|
|
437 |
|
|
|
438 |
``` |
|
|
439 |
|
|
|
440 |
# Session Info |
|
|
441 |
```{r} |
|
|
442 |
|
|
|
443 |
sessionInfo() |
|
|
444 |
|
|
|
445 |
``` |