--- a +++ b/analysis/IntegrateTcells.Rmd @@ -0,0 +1,445 @@ +--- +title: "Integrate T cells" +author: Tobias Roider +date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" +output: + + rmdformats::readthedown: +editor_options: + chunk_output_type: console +--- + +```{r options, include=FALSE, warning = FALSE} + +library(knitr) +opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, + dpi = 100, cache = FALSE, warning = FALSE) +opts_knit$set(root.dir = "../") +options(bitmapType = "cairo") + +``` + +# Functions and packages +```{r read data} + +require(future) +require(future.apply) +source("R/ReadPackages.R") +source("R/Functions.R") +source("R/ThemesColors.R") +#source("R/Helpers.R") + +``` + +# Read meta data +```{r read meta} + +df_meta <- read.csv("data/metaData.csv", sep = ",") %>% + filter(!is.na(Run)) + +df_meta %>% select(PatientID, Entity, Run) %>% + DT::datatable(., options = list(pageLength = 5, autoWidth = TRUE)) + +``` + +## Read count tables +```{r read count} + +sobjs_T <- lapply(df_meta$PatientID, function(x){ + + # Read count matrices + rna <- read.delim(paste0("countMatrices/", x, "_Tcells_3'RNA.txt"), sep = " ") + adt <- read.delim(paste0("countMatrices/", x, "_Tcells_ADT.txt"), sep = " ") + + # Create Seurat Object + sobj <- CreateSeuratObject(counts = rna) + + # Add ADT data + sobj[["ADT"]] <- CreateAssayObject(counts = adt) + DefaultAssay(sobj) <- "RNA" + + # Add Percentage of mitochondrial genes and some meta data + sobj$percent.mt <- PercentageFeatureSet(sobj, pattern = "^MT-") + sobj$Barcode_full <- colnames(sobj) + sobj$PatientID <- x + + meta_tmp <- df_meta %>% filter(PatientID==x) + + # Add more meta data + sobj$Entity <- meta_tmp$Entity + sobj$Subtype <- meta_tmp$Subtype + sobj$Age <- meta_tmp$Age + sobj$Sex <- meta_tmp$Sex + sobj$Status <- meta_tmp$Status + sobj$Run <- meta_tmp$Run + + return(sobj) + +}) %>% `names<-`(df_meta$PatientID) + +``` + +## Process CITE-seq data +```{r process} + +sobjs_T <- lapply(sobjs_T, function(sobj){ + + # Please note that low quality cells (e.g. high mito counts), doublets, + # and non T-cells were already filtered and are not contained in the provided count matrices. + # Thus further filtering is not necessary here. + # In case you need unfiltered raw data, please contact tobias.roider@embl.de + + # Normalize data + sobj <- NormalizeData(sobj, normalization.method = "LogNormalize", scale.factor = 10000) + + # Run Seurat Processing + sobj <- SeuratProc_T(sobj, verbose=FALSE, + dims.clustering=1:14, + resolution.clustering = 0.4, + dims.umap=1:13) + + # Run Processing for ADT data + DefaultAssay(sobj) <- "ADT" + sobj <- NormalizeData(sobj, assay = "ADT", normalization.method = "CLR") + + # Run Seurat Processing for ADT part + sobj <- SeuratProcADT_T(sobj, verbose=FALSE, + dims.clustering=1:14, + resolution.clustering = 0.4, + dims.umap=1:13) + + DefaultAssay(sobj) <- "RNA" + Idents(sobj) <- "RNA_snn_res.0.4" + + return(sobj) + +}) + +``` + +# Integrate data +## Merge data +```{r merge} + +# Merge objects +for(i in 1:length(sobjs_T)) { + if(i==1){ + Combined_T <- merge(sobjs_T[[1]], sobjs_T[[2]]) + } + if(i>2){ + Combined_T <- merge(Combined_T, sobjs_T[[i]]) + } +} + +``` + +## Split objects by run +```{r split} + +# Split objects again by run to account for most important batch factor +splitted_objects <- SplitObject(Combined_T, split.by = "Run") + +``` + +## Integrate RNA +### Find anchors and integrate data +```{r anchors rna} + +anchors <- FindIntegrationAnchors(object.list = splitted_objects, + dims = 1:20, + assay = rep("RNA", length(splitted_objects))) + +Combined_T <- IntegrateData(anchorset = anchors, + new.assay.name = "integratedRNA") + +DefaultAssay(Combined_T) <- "integratedRNA" + +``` + +### Standard workflow for integrated object +```{r workflow rna} + +Combined_T <- ScaleData(Combined_T) +Combined_T <- RunPCA(Combined_T, + reduction.name = "pcaRNA", reduction.key = "pcaRNA_") + +Combined_T <- RunUMAP(Combined_T, dims = 1:20, reduction.key = "umapRNA_", + reduction.name = "umapRNA", reduction = "pcaRNA") + +Combined_T <- FindNeighbors(Combined_T, reduction = "pcaRNA", dims = 1:20) +Combined_T <- FindClusters(Combined_T, resolution = 0.6) + +``` + +### Visualization +#### Cluster +```{r vis cluster rna, fig.height=5, fig.width=5.5} + +DimPlot(Combined_T, reduction = "umapRNA", label = T, raster = T)+ + NoLegend() + +``` + +#### PatientID +```{r vis cluster pat, include=F, eval=F} + +DimPlot(Combined_T, reduction = "umapRNA", label = F, raster = T, group.by = "PatientID")+ + NoLegend() + +``` + +#### Run +```{r vis run run, include=F, eval=F} + +DimPlot(Combined_T, reduction = "umapRNA", label = F, raster = T, group.by = "Run")+ + NoLegend() + +``` + +## Integrate ADT +### Find anchors and integrate data +```{r anchors adt} + +anchors <- FindIntegrationAnchors(object.list = splitted_objects, + dims = 1:20, + assay = rep("ADT", length(splitted_objects))) + +Combined_T_ADT <- IntegrateData(anchorset = anchors, + new.assay.name = "integratedADT") + +Combined_T[["integratedADT"]] <- Combined_T_ADT[["integratedADT"]] + +``` + +### Standard workflow for integrated object +```{r workflow adt} + +DefaultAssay(Combined_T) <- "integratedADT" + +# Run the standard workflow for visualization and clustering +Combined_T <- ScaleData(Combined_T) +Combined_T <- RunPCA(Combined_T, npcs = 30, nfeatures.print = 5, + reduction.name = "pcaADT", reduction.key = "pcaADT_") + +Combined_T <- RunUMAP(Combined_T, reduction = "pcaADT", dims = 1:20, + reduction.name = "umapADT", + reduction.key = "umapADT_") + +Combined_T <- FindNeighbors(Combined_T, reduction = "pcaADT", dims = 1:20) +Combined_T <- FindClusters(Combined_T, resolution = 0.4) + +``` + +### Visualization +#### Cluster +```{r vis cluster adt, fig.height=5, fig.width=5.5} + +DimPlot(Combined_T, reduction = "umapADT", label = TRUE, raster = T)+NoLegend() + +``` + +#### PatientID +```{r vis pat adt, include=F, eval=F} + +DimPlot(Combined_T, reduction = "umapADT", label = FALSE, raster = T, + group.by = "PatientID")+NoLegend() + +``` + +#### Run +```{r vis run adt, include=F, eval=F} + +DimPlot(Combined_T, reduction = "umapADT", label = FALSE, raster = T, + group.by = "Run")+NoLegend() + +``` + +# Identify and refine clusters +## Repeat clutering with higher resolution +```{r clustering high res, fig.height=5, fig.width=5.5} + +DefaultAssay(Combined_T) <- "integratedRNA" +Combined_T <- FindClusters(Combined_T, resolution = 1.4) +DimPlot(Combined_T, reduction = "umapRNA", label = T, raster = T, + group.by = "integratedRNA_snn_res.1.4")+NoLegend() + +Idents(Combined_T) <- "integratedRNA_snn_res.1.4" + +``` + +# Identify clusters +## Find Markers +```{r identify markers} + +Idents(Combined_T) <- "integratedRNA_snn_res.1.4" + +clusters <- paste0("cluster_", 0:(length(unique(Idents(Combined_T)))-1)) + +# Marker +markers_rna <- lapply(clusters, function(x){ + z <- as.numeric(gsub(x, pattern = "cluster_", replacement = "")) + + df_mark <- FindMarkers(Combined_T, ident.1 = z, assay = "integratedRNA", test.use = "roc") %>% + mutate(avg_diff=round(avg_diff, 3), + avg_log2FC=round(avg_log2FC, 3)) %>% + select(-avg_diff, -pct.1, -pct.2) %>% + rownames_to_column("Gene") + + return(df_mark) + }) %>% `names<-`(clusters) %>% + bind_rows(., .id = "Cluster") %>% + mutate(Cluster=substr(Cluster,9,10)) + +# Marker +markers_adt <- lapply(clusters, function(x){ + z <- as.numeric(gsub(x, pattern = "cluster_", replacement = "")) + + df_mark <- FindMarkers(Combined_T, ident.1 = z, assay = "integratedADT", test.use = "roc") %>% + mutate(avg_diff=round(avg_diff, 3), + avg_log2FC=round(avg_log2FC, 3)) %>% + select(-avg_diff, -pct.1, -pct.2) %>% + rownames_to_column("Protein") + + return(df_mark) + }) %>% `names<-`(clusters) %>% + bind_rows(., .id = "Cluster") %>% + mutate(Cluster=substr(Cluster,9,10)) + +``` + +### Show Markers +#### RNA +```{r show markers rna} +DT::datatable(markers_rna, rownames = FALSE, filter = "top", + options = list(pageLength = 10, autoWidth = TRUE)) + + +``` + +#### ADT +```{r show markers adt} + +DT::datatable(markers_adt, rownames = FALSE, filter = "top", + options = list(pageLength = 10, autoWidth = TRUE)) + +``` + +# Refine object +## Identify unwanted clusters +```{r refine clusters} +# Remove cluster of with levels of LYZ (--> myeloid cells) +c1 <- markers_rna %>% filter(Gene=="LYZ", myAUC>0.8) %>% pull(Cluster) + +# Remove cluster with high levels of mito genes +c2 <- markers_rna %>% group_by(Cluster) %>% + top_n(5, myAUC) %>% + filter(Gene=="MT-CO3") %>% + pull(Cluster) + +# Remove cluster with high levels of interferon induced genes +c3 <- markers_rna %>% group_by(Cluster) %>% + top_n(5, myAUC) %>% + filter(Gene=="IFI44L") %>% + pull(Cluster) + +# Remove cluster with high levels of interferon induced genes +c4 <- markers_rna %>% group_by(Cluster) %>% + top_n(1, myAUC) %>% + filter(Gene=="ISG15") %>% + pull(Cluster) + +# Remove cluster with high levels of heat shock proteins +c5 <- markers_rna %>% group_by(Cluster) %>% + top_n(5, myAUC) %>% + filter(Gene=="HSP90AB1") %>% + pull(Cluster) + +clusters_keep <- setdiff(levels(Combined_T$integratedRNA_snn_res.1.4), c(c1,c2,c3,c4,c5)) +clusters_keep + +``` + +## Subset object +```{r subset object, fig.height=5, fig.width=5.5} + +Combined_T <- subset(Combined_T, idents = clusters_keep) +DimPlot(Combined_T, label = T)+ + NoLegend() + +Combined_T <- RunUMAP(Combined_T, dims = 1:30, reduction = "pcaRNA", + reduction.name = "umapRNA", reduction.key = "umapRNA_") +Combined_T <- FindNeighbors(Combined_T, reduction = "pcaRNA", dims = 1:20) +Combined_T <- FindClusters(Combined_T, resolution = 1.4) + +DimPlot(Combined_T, label = T, group.by = "integratedRNA_snn_res.1.4", raster = T)+ + NoLegend() + +Idents(Combined_T) <- "IdentI" + +``` + +# Run WNN pipeline +```{r run wnn, fig.height=5, fig.width=5.5} + +Combined_T <- FindMultiModalNeighbors( + Combined_T, reduction.list = list("pcaRNA", "pcaADT"), k.nn = 30, + dims.list = list(1:12, 1:20), modality.weight.name = c("RNA.weight", "ADT.weight") +) + +Combined_T <- RunUMAP(Combined_T, nn.name = "weighted.nn", reduction.name = "wnn.umap", + reduction.key = "wnnUMAP_", return.model = TRUE) + +Combined_T <- FindClusters(Combined_T, graph.name = "wsnn", algorithm = 3, resolution = 0.7) + +DimPlot(Combined_T, reduction = 'wnn.umap', group.by = "wsnn_res.0.7", label = T, raster = T)+ + NoLegend() + +``` + +# Remove singletons +```{r remove singletons} + +Combined_T <- subset(Combined_T, idents = c(0:14)) + +``` + +# Re-run WNN pipeline +```{r rerun wnn} + +Combined_T <- FindMultiModalNeighbors( + Combined_T, reduction.list = list("pcaRNA", "pcaADT"), k.nn = 30, + dims.list = list(1:15, 1:20), modality.weight.name = c("RNA.weight", "ADT.weight") +) + +Combined_T <- RunUMAP(Combined_T, nn.name = "weighted.nn", reduction.name = "wnn.umap", + reduction.key = "wnnUMAP_", return.model = TRUE) +Combined_T <- FindClusters(Combined_T, graph.name = "wsnn", algorithm = 3, resolution = 0.7) + +``` + +# Compare with original object +```{r compare with original, fig.height=5, fig.width=5.5} + +Combined_T_or <- readRDS("output/Tcells_Integrated.rds") +DimPlot(AddMetaData(Combined_T, metadata = Idents(Combined_T_or), + col.name = "IdentI_original"), + reduction = 'wnn.umap', group.by = "IdentI_original", label = T, raster = T)+ + NoLegend() + +``` + +# Save object +```{r save, eval=F} + +saveRDS(Combined_T, file = "output/Tcells_Integrated.rds") + +# Output might slightly differ depending on the version and system you use. For exact reproduction of figures please use Seurat Object provided at HeiData. + +``` + +# Session Info +```{r} + +sessionInfo() + +```