[226bc8]: / R / part04.R

Download this file

455 lines (387 with data), 18.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
################################################################################
# VOLCANO PLOTS
################################################################################
#_______________________________________________________________________________
## color by number of sign concentration steps / one dot per drug
#-------------------------------------------------------------------------------
## MAIN FUNCTION
ggvolc2 = function(df, title, Ycut, color=NA, xlab, maxX, maxY, expY, hghBox,
axisMarkY, breaksX, arrowLength, Xhang, minConc, fixedHght) {
# quiets concerns of R CMD check "no visible binding for global variable"
X=NULL; Y=NULL; labX=NULL; labY=NULL; Label=NULL;
hjust=NULL; x=NULL; y=NULL; xend=NULL; yend=NULL;
Color=NULL; .x=NULL; Fill=NULL
# color palette
pal = setNames(rev(c(brewer.pal(11, "RdYlBu")[1:5], "#000000",
brewer.pal(11, "RdBu")[7:11])), nm=1:11)
# check if dataq.frame have required columns
stopifnot(all(c("X","Y","Label","Grey") %in% colnames(df)))
# check if colors are for the palette # if not use the default
col.default = c(pal[2], pal[9])
color = if(all(color %in% colors())) color else col.default
# x axis
Xlims = c(-maxX, maxX)
# y axis
Ylims = c(-0.05, maxY)
# direction of the effect
df$Direction = 0
df$Direction[df$Y>=Ycut & df$X<0] = -1
df$Direction[df$Y>=Ycut & df$X>0] = 1
# add column saying if association is significant
df$IsSignificant = df$Y>=Ycut & !df$Grey
# decide what should have label
df$haveLabel = df$IsSignificant & df$signConc >= minConc
# positions for labels
calcY = function(y.org) {
rng = c(Ycut+0.1,maxY-0.1)
if(length(y.org)==1) {
y.org = rng[1]+(rng[2]-rng[1])/2
} else {
inc = (rng[2]-rng[1])/length(y.org)
newY = rng[1]+inc*(1:length(y.org))
y.org[order(y.org)] = newY
}
y.org
}
df$labY[df$haveLabel] = calcY(y.org=df$Y[df$haveLabel])
df$labX = with(df, ifelse(haveLabel,
ifelse(Direction==1, Xlims[2]-Xhang,
Xlims[1]+Xhang), NA))
df$hjust = ifelse(sign(df$labX)==1, 0, 1)
labNo = length(df$Y[df$haveLabel])
df$Color = factor(6+(df$signConc*df$Direction), levels=1:11)
# make grey dots really grey
df$Color[df$Grey] = 6
# construct the plot
if(sum(df$haveLabel)>0) {
# construct the labels
df2 = df[df$haveLabel,]
gg = ggplot() +
geom_segment(data=df2, aes(x=X, y=Y, xend=labX, yend=labY),
colour="darkgrey", alpha=0.7, linetype="longdash", size=0.1) +
geom_text(data=df2, mapping=aes(x=labX, y=labY, label=Label, hjust=hjust),
size=2.5) # dotted, size=2.5
# and arrows
gg = gg +
geom_segment(data=data.frame(x=0, y=0, xend=-arrowLength, yend=0),
aes(x=x,y=y,xend=xend,yend=yend),
arrow=arrow(length = unit(0.25, "cm"), type="open"),
colour=color[1], size=0.8) +
geom_segment(data=data.frame(x=0, y=0, xend=arrowLength, yend=0),
aes(x=x,y=y,xend=xend,yend=yend),
arrow=arrow(length = unit(0.25, "cm"), type="open"),
colour=color[2], size=0.8)
} else {
gg = ggplot()
}
gg = gg + geom_hline(yintercept=Ycut, colour="dimgrey", linetype="dashed") +
geom_vline(xintercept=0, colour="dimgrey", size=0.1) +
geom_point(data=df, aes(x=X, y=Y, fill=Color, color=Color), shape=21,
size=3) +
scale_fill_manual(values=col2hex(pal, alpha=0.7)) +
scale_color_manual(values=pal) + theme_bw() +
xlab(xlab) + ggtitle(title) +
scale_y_continuous(
expression(italic(p)*"-value"), breaks=seq(0,maxY,axisMarkY),
labels=math_format(expr=10^.x)(-seq(0,maxY,axisMarkY)), limits=Ylims,
expand = c(expY,0)) +
scale_x_continuous(limits=Xlims, breaks=breaksX, labels=percentAxisScale) +
theme(axis.text.y=element_text(size=8), axis.text.x=element_text(size=8),
axis.title.x=element_text(size=8), axis.title.y=element_text(size=8),
plot.title= element_text(size=8))
# construct the gtable
wdths = c(0.2, 0.4, 3.5*(Xlims[2]-Xlims[1]), 0.2)
hghts = c(0.3, ifelse(is.na(fixedHght), hghBox*nrow(df2), fixedHght), 0.3, 0.2)
gt = gtable(widths=unit(wdths, "in"), heights=unit(hghts, "in"))
## make grobs
ggr = ggplotGrob(gg)
## fill in the gtable
gt = gtable_add_grob(gt, gtable_filter(ggr, "panel"), 2, 3)
gt = gtable_add_grob(gt, ggr$grobs[[whichInGrob(ggr, "axis-l")]], 2, 2)
gt = gtable_add_grob(gt, ggr$grobs[[whichInGrob(ggr, "axis-b")]], 3, 3)
gt = gtable_add_grob(gt, ggr$grobs[[whichInGrob(ggr, "xlab-b")]], 4, 3)
gt = gtable_add_grob(gt, ggr$grobs[[whichInGrob(ggr, "ylab-l")]], 2, 1)
gt = gtable_add_grob(gt, gtable_filter(ggr, "title"), 1, 3) # title
# legend # it should adjust depending on minConc
pal = setNames(pal[-ceiling(length(pal)/2)], nm=c(-5:-1,1:5))
fakeDF = data.frame(X=1:length(pal), Y=LETTERS[1:length(pal)], Fill=names(pal))
gl = ggplot() +
geom_bar(data=fakeDF, aes(x=X, y=Y, fill=Fill),
stat="identity", position="identity") +
scale_fill_manual(name="Number of\nsignificant\nconcentrations",
values=pal,
labels=c(`-5`="", `-4`="", `-3`="", `-2`="", `-1`="",
`1`="1 conc.", `2`="2 conc.", `3`="3 conc.",
`4`="4 conc.", `5`="5 conc"), drop = FALSE) +
guides(fill=guide_legend(ncol=2)) +
theme(legend.text=element_text(size=8),
legend.title=element_text(size=8, face="bold"),
legend.title.align=0.5)
# construct the gtable
wdthsL = c(2)
hghtsL = 2
gtL = gtable(widths=unit(wdthsL, "in"), heights=unit(hghtsL, "in"))
## make grobs
ggl = ggplotGrob(gl)
## fill in the gtable
gtL = gtable_add_grob(gtL, ggl$grobs[[whichInGrob(ggl, "guide-box-right")]], 1, 1)
return(list("figure"=list(width=sum(wdths), height=sum(hghts), plot=gt),
"legend"=list(width=sum(wdthsL), height=sum(hghtsL), plot=gtL)))
}
## RUNNING FUNCTION
run.ggvolcGr2 = function(results, effects, screen, mts, fdr, maxX, maxY,
expY, hghBox, axisMarkY, breaksX, arrowLength,
Xhang, minConc, dtab=BloodCancerMultiOmics2017::drugs, fixedHght=NA) {
# select appropriate data to plot
results = results[[screen]]
effects = effects[[screen]]
# merge the results and effects
reseff = merge(results, effects, by=c("DrugID","TestFac","FacDr"))
# filter the data to only those lines which will be plotted
reseff = reseff[reseff$TestFac %in% mts,]
# mark significant cases
reseff$fdr = reseff$adj.pval <= fdr
# find out the p-value threshold
cut = max(reseff$pval[reseff$fdr])
# iterate on each mutation
waste = tapply(1:nrow(reseff), reseff$TestFac, function(idx) {
# mutation to be plotted
mt = reseff[idx[1], "TestFac"]
# select the data to be plotted
re = reseff[idx,]
## for each drug select the association with the biggest difference in effects
re = do.call(rbind, tapply(1:nrow(re), re$DrugID2, function(i) {
tmp = re[i,]
if(all(tmp$fdr==FALSE)) {
return(cbind(tmp[which.max(abs(tmp$WM)),], signConc=0))
} else {
tmp = tmp[tmp$fdr,]
return(cbind(tmp[which.max(abs(tmp$WM)),], signConc=nrow(tmp)))
}
}))
# create input data frame
plotDF = with(re, data.frame(X=(-1)*WM, Y=-log10(pval),
Label=dtab[DrugID2,"name"],
Grey= mean.0 <0.1 & mean.1 <0.1 & fdr,
signConc))
# maxY
if(is.na(maxY)) maxY=max(ceiling(plotDF$Y))
# additional paremeters (labels, colors)
xlab = "Difference of effects"
# run the plotting function
ggvolc2(df=plotDF, title=mt, Ycut=-log10(cut), color=NA, xlab=xlab,
maxX=maxX, maxY=maxY, expY=expY, hghBox=hghBox,
axisMarkY=axisMarkY, breaksX=breaksX, arrowLength=arrowLength,
Xhang=Xhang, minConc=minConc, fixedHght=fixedHght)
})
# names(waste) = paste(names(waste), screen, sep=".")
waste
}
################################################################################
# HEAT MAP
################################################################################
ggheat = function(results, effects, dtab=BloodCancerMultiOmics2017::drugs, ctab=BloodCancerMultiOmics2017::conctab) {
# quiets concerns of R CMD check "no visible binding for global variable"
diag.conc=NULL; Drug2=NULL; Fill=NULL; x=NULL; fill=NULL
# COLORS
# color palette
pal = c(brewer.pal(11, "PiYG")[2], brewer.pal(11, "RdBu")[10]) # only 2 colors!
# border of whole plot
cPanb = "black"
sPanb = 0.5
# minor & major grid
cGrid = c("grey", "dimgrey")
# apply the FDR threshold
FDR = 0.1
plotDF = do.call(rbind, lapply(names(results), function(nm) {
df = merge(results[[nm]], effects[[nm]], by=c("FacDr", "TestFac", "DrugID"))
df$plot.pval = ifelse(df$adj.pval <= FDR, df$pval*sign(df$WM), 1)
df$plot.simple.pval = ifelse(df$adj.pval <= FDR, 1*sign(df$WM), 0)
df$plot.simple.pval = factor(df$plot.simple.pval, levels=c(-1,1,0))
df
}))
# add column which orders the coulumns of the plot
plotDF$diag = sapply(plotDF$TestFac, function(tf)
strsplit(tf, ".", fixed=TRUE)[[1]][[2]])
plotDF$conc = sapply(plotDF$DrugID, function(drid) {
splits = strsplit(drid, "-")[[1]]
colnames(ctab)[which(ctab[splits[1],] == splits[2])]
})
plotDF$diag.conc = paste(plotDF$diag, plotDF$conc, sep=".")
diagOrder = names(colDiagS)[names(colDiagS) %in% unique(plotDF$diag)]
plotDF$diag.conc = factor(plotDF$diag.conc,
levels=as.vector(sapply(diagOrder,
function(d)
paste(d, paste0("c", 1:5),
sep="."))))
# names of drugs / order them
plotDF$Drug2 = dtab[plotDF$DrugID2, "name"]
plotDF$Drug2 = factor(plotDF$Drug2, levels=dtab[rev(mainDrOrd),"name"])
# data frame for vline
vltab = table(sapply(unique(plotDF$diag), function(x) grep(x, diagAmt)))
vldf = data.frame(x=seq(5.5, length(levels(plotDF$diag.conc)), 5), col=1)
vldf$col[cumsum(vltab[1:(length(vltab)-1)])] = 2 # remove latest
vldf$col = factor(vldf$col, levels=c(1,2))
plotDF$Fill = log10div(plotDF$plot.pval) # transform the values to log10 scale
plotDF$Fill = pmax(pmin(plotDF$Fill, 12), -12) # censore
# color palette
pal = rev(c(brewer.pal(11,"PiYG")[1:6], brewer.pal(11,"RdBu")[7:11]))
pal[6] = "gray95"
gMain2 = ggplot() + geom_tile(data=plotDF,
aes(x=diag.conc, y=Drug2, fill=Fill)) +
scale_fill_gradientn(expression(italic(p)*"-value"),
colours=pal, limits=c(-12, 12),
breaks=c(-12,-8,-4,0,4,8,12), labels=exp10div) +
theme_bw() +
geom_vline(xintercept=seq(0.5, length(levels(plotDF$diag.conc))+1, 1),
color="white", size=1.5) +
geom_hline(yintercept=seq(0.5, length(levels(plotDF$Drug2))+1, 1),
color="white", size=1.5) +
geom_vline(data=vldf, aes(xintercept=x, color=col)) +
scale_color_manual(values=c("1"=cGrid[1], "2"=cGrid[2])) +
coord_equal() + xlab("") + ylab("") +
scale_y_discrete(expand=c(0,0)) +
scale_x_discrete(expand=c(0,0)) +
theme(axis.title=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_text(size=10),
axis.ticks.x=element_blank(),
panel.border=element_rect(colour=cPanb, fill=NA, size=sPanb),
legend.key=element_rect(color="black"),
legend.text=element_text(size=10),
legend.title=element_text(size=10, face="bold")) +
guides(color=FALSE)
#################################################
# concentrations
concDF = data.frame(x=factor(levels(plotDF$diag.conc)),
fill=factor(rep(paste0("c",1:5)), levels=paste0("c",1:5)))
concpal = setNames(paste0("grey", seq(35, 95, 15)), nm=paste0("c",1:5))
gConc = ggplot() + geom_tile(data=concDF, aes(x=x, y=1, fill=fill)) +
scale_fill_manual("Drug\nconcentration", values=concpal) +
scale_y_continuous(expand=c(0,0)) +
scale_x_discrete(expand=c(0,0)) + theme_bw() +
theme(axis.title=element_blank(), axis.text=element_blank(),
axis.ticks=element_blank(), legend.text=element_text(size=10),
legend.title=element_text(size=10, face="bold"),
legend.key=element_rect(color="black"),
panel.border=element_rect(colour=cPanb, fill=NA, size=sPanb)) +
geom_vline(data=vldf, aes(xintercept=x, color=col)) +
scale_color_manual(values=c("1"=cGrid[1], "2"=cGrid[2])) +
guides(color=FALSE)
# annotation of cell of origin
diagOrd = sapply(unique(plotDF$diag), function(x) grep(x, diagAmt))
diagOrd = diagOrd[diagOrder]
annoDF = data.frame(x=names(diagAmt)[diagOrd],
diag=factor(names(diagOrd), levels=names(diagOrd)))
annoDF$x = factor(annoDF$x, levels=unique(annoDF$x))
# vline
vldf2 = data.frame(x=seq(1.5, length(levels(annoDF$diag)), 1), col=1)
vldf2$col[cumsum(table(diagOrd)[1:(length(table(diagOrd))-1)])] = 2
vldf2$col = factor(vldf2$col, levels=c(1,2))
gAnno = ggplot() + geom_tile(data=annoDF, aes(x=diag, y=1, fill=x)) +
scale_fill_manual("Disease origin", values=colDiagL) +
scale_y_continuous(expand=c(0,0)) + scale_x_discrete(expand=c(0,0)) +
theme_bw() +
theme(axis.title=element_blank(),
axis.text=element_blank(),
axis.ticks=element_blank(),
legend.text=element_text(size=10),
legend.title=element_text(size=10, face="bold"),
panel.border=element_rect(colour=cPanb, fill=NA, size=sPanb),
legend.key=element_rect(color="black")) +
geom_vline(data=vldf2, aes(xintercept=x, color=col)) +
scale_color_manual(values=c("1"=cGrid[1], "2"=cGrid[2])) +
guides(color=FALSE) +
geom_text(data=annoDF, aes(label=diag, y=1, x=diag))
## MERGE PLOTS INTO ONE FIGURE
# prepare grobs
ggM = ggplotGrob(gMain2)
ggA = ggplotGrob(gAnno)
ggC = ggplotGrob(gConc)
# prepare gtable
nX = length(levels(plotDF$diag.conc))
nY = length(levels(plotDF$Drug2))
unM = 0.15 # unit for main heat map
unA = 0.25 # unit for y-axis of the annotation - diagnosis
unC = 0.15 # unit for y-axis of the concentration
sp = 0.0 # space
wdths = c(1.5, nX*unM, 2)
hghts = c(unA, sp, nY*unM, unC)
gt = gtable(widths=unit(wdths, "in"), heights=unit(hghts, "in"))
# add pieces to gtable
gt = gtable_add_grob(gt, ggA$grobs[[whichInGrob(ggA, "panel")]], 1, 2)
gt = gtable_add_grob(gt, ggM$grobs[[whichInGrob(ggM, "panel")]], 3, 2)
gt = gtable_add_grob(gt, ggC$grobs[[whichInGrob(ggC, "panel")]], 4, 2)
gt = gtable_add_grob(gt, ggM$grobs[[whichInGrob(ggM, "axis-l")]], 3, 1)
# legend cell origin & concentration & effect
wdthsL = c(2,2,2)
hghtsL = 2
gtL = gtable(widths=unit(wdthsL, "in"), heights=unit(hghtsL, "in"))
gtL = gtable_add_grob(gtL, ggA$grobs[[whichInGrob(ggA, "guide-box-right")]], 1, 1)
gtL = gtable_add_grob(gtL, ggM$grobs[[whichInGrob(ggM, "guide-box-right")]], 1, 2)
gtL = gtable_add_grob(gtL, ggC$grobs[[whichInGrob(ggC, "guide-box-right")]], 1, 3)
return(list("figure"=list(width=sum(wdths), height=sum(hghts), plot=gt),
"legend"=list(width=sum(wdthsL), height=sum(hghtsL), plot=gtL)))
}
################################################################################
# BEE SWARM PLOTS
################################################################################
beeF <- function(drug, mut, cs, diag, y1, y2, custc,
lpd=BloodCancerMultiOmics2017::lpdAll,
ctab=BloodCancerMultiOmics2017::conctab,
dtab=BloodCancerMultiOmics2017::drugs) {
col1 <- vector(); col2 <- vector()
dr <- lpd[ , lpd$Diagnosis %in% diag ]
p = t.test( Biobase::exprs(dr)[drug,] ~ Biobase::exprs(dr)[mut,], var.equal = TRUE)$p.value
#clonsize
af <- fData(BloodCancerMultiOmics2017::mutCOM)[colnames(dr), paste0(mut, "cs")]
#Create a function to generate a continuous color palette
rbPal <- colorRampPalette(c('coral1','blue4'))
# This adds a cont. color code
if (cs==T) {
col2 <- rbPal(100)[as.numeric(cut( af, breaks = 100 ))]
} else {
col2 <- "blue4"
}
if (custc==T) {
col1 <- ifelse(Biobase::exprs(dr)[mut,]==1, col2,"coral1")
} else {
col1 <- ifelse(Biobase::exprs(dr)[mut,]==1, "green","magenta")
}
beeswarm( Biobase::exprs(dr)[drug,] ~ Biobase::exprs(dr)[mut,],
method = 'swarm',
pch = 19, pwcol = col1, cex = 1.6,
xlab = '', ylab = 'Viability', cex.axis=1.6, cex.lab=1.9,
ylim=c(y1,y2),
labels = c("AF=0", "AF>0"),
main=(paste0( giveDrugLabel(drug, ctab, dtab), " ~ ", mut,
"\n (p = ",
digits = format.pval(p,
max(1, getOption("digits") - 4)),
")")),
cex.main=2.0,
bty="n"
)
boxplot(Biobase::exprs(dr)[drug,] ~ Biobase::exprs(dr)[mut,], add = T, names = c("",""),
col="#0000ff22", axes = 0, outline=FALSE)
}
# BEESWARM FOR PRETREATMENT
beePretreatment = function(lpd, drug, y1, y2, fac, val, name) {
dr <- lpd[ , Biobase::exprs(lpd)[fac,] %in% val]
pretreat <- BloodCancerMultiOmics2017::patmeta[colnames(dr),
"IC50beforeTreatment"]
p = t.test( Biobase::exprs(dr)[drug,] ~ pretreat, var.equal = TRUE)$p.value
beeswarm( Biobase::exprs(dr)[drug,] ~ pretreat,
method = 'swarm',
pch = 19, cex = 1.2, pwcol=ifelse(pretreat, "blue4", "coral1"),
xlab = '', ylab = 'Viability', cex.axis=1.6, cex.lab=1.8,
labels = c("pre-treated", "not treated"),
main=paste0(
name," (p = ", digits = format.pval(
p, max(1, getOption("digits") - 4)), ")"), ylim=c(y1,y2),
cex.main=2,
bty="n"
)
boxplot(Biobase::exprs(dr)[drug,] ~ pretreat, add = T, names = c("",""),
col="#0000ff22", axes = 0, outline=FALSE)
}