Diff of /vignettes/src/part15.Rmd [000000] .. [226bc8]

Switch to unified view

a b/vignettes/src/part15.Rmd
1
---
2
title: "Part 15"
3
output:
4
  BiocStyle::html_document
5
---
6
7
```{r, message=FALSE, include=!exists(".standalone"), eval=!exists(".standalone")}
8
library("BloodCancerMultiOmics2017")
9
library("Biobase")
10
library("ggbeeswarm")
11
library("ggplot2")
12
library("gridExtra")
13
library("dplyr")
14
```
15
16
```{r echo=FALSE}
17
plotDir = ifelse(exists(".standalone"), "", "part15/")
18
if(plotDir!="") if(!file.exists(plotDir)) dir.create(plotDir)
19
```
20
21
22
# Association between HSP90 inhibitor response and IGHV status
23
24
We  investigated  additional  HSP90  inhibitors  (ganetespib,  onalespib)  in  120  patient  samples  from  the  original cohort (CLL), for whom IGHV status was available.
25
26
Load the additional drug response dataset.
27
```{r}
28
data(list= c("validateExp","lpdAll"))
29
```
30
31
Preparing table for association test and plotting.
32
```{r}
33
plotTab <- filter(validateExp, Drug %in% c("Ganetespib", "Onalespib")) %>%
34
  mutate(IGHV = Biobase::exprs(lpdAll)["IGHV Uppsala U/M", patientID]) %>%
35
  filter(!is.na(IGHV)) %>%
36
  mutate(IGHV = as.factor(ifelse(IGHV == 1, "M","U")),
37
         Concentration = as.factor(Concentration))
38
```
39
40
Association test using Student's t-test.
41
```{r}
42
pTab <- group_by(plotTab, Drug, Concentration) %>%
43
  do(data.frame(p = t.test(viab ~ IGHV, .)$p.value)) %>%
44
  mutate(p = format(p, digits =2, scientific = TRUE))
45
```
46
47
Bee swarm plot.
48
```{r HSP90confirm, fig.width=14, fig.height=5, warning=FALSE, fig.path=plotDir, dev=c("png", "pdf")}
49
pList <- group_by(plotTab, Drug) %>% 
50
  do(plots = ggplot(., aes(x=Concentration, y = viab)) + 
51
       stat_boxplot(geom = "errorbar", width = 0.3,
52
                    position = position_dodge(width=0.6), 
53
                    aes(dodge = IGHV)) +
54
       geom_boxplot(outlier.shape = NA, position = position_dodge(width=0.6), 
55
                    col="black", width=0.5, aes(dodge = IGHV)) + 
56
       geom_beeswarm(size=1,dodge.width=0.6, aes(col=IGHV)) +
57
       theme_classic() +
58
       scale_y_continuous(expand = c(0, 0),breaks=seq(0,1.2,0.20)) +
59
       coord_cartesian(ylim = c(0,1.30)) +
60
       xlab("Concentration (µM)") + ylab("Viability") + 
61
       ggtitle(unique(.$Drug)) +
62
       geom_text(data=filter(pTab, Drug == unique(.$Drug)), y = 1.25, 
63
                 aes(x=Concentration, label=sprintf("p=%s",p)),
64
                 size = 4.5) + 
65
      theme(axis.line.x = element_blank(),
66
            axis.ticks.x = element_blank(),
67
             axis.text  = element_text(size=15),
68
            axis.title = element_text(size =15),
69
             legend.text = element_text(size=13),
70
            legend.title = element_text(size=15),
71
             plot.title = element_text(face="bold", hjust=0.5, size=17),
72
             plot.margin = unit(c(0.5,0.5,0.5,0.5), "cm"))) 
73
grid.arrange(grobs = pList$plots, ncol =2)
74
```
75
The HSP90 inhibitors had higher activity in U-CLL, consistent  with the result for AT13387. These data suggest that the finding of BCR (IGHV mutation) specific effects  appears to be a compound class effect and further solidifies the results. 
76
77
# Association between MEK/ERK inhibitor response and trisomy12
78
79
To  further  investigate  the  association  of  trisomy  12  and  MEK  dependence,  we  investigated  additional  MEK  and  ERK  inhibitors  (cobimetinib,  SCH772984  and  trametinib)  in  119  patients  from  the  original  cohort,  for  whom  trisomy  12  status  was  available. 
80
81
Preparing table for association test and plotting.
82
```{r}
83
plotTab <- filter(validateExp, Drug %in%
84
                    c("Cobimetinib","SCH772984","Trametinib")) %>%
85
  mutate(Trisomy12 = Biobase::exprs(lpdAll)["trisomy12", patientID]) %>%
86
  filter(!is.na(Trisomy12)) %>%
87
  mutate(Trisomy12 = as.factor(ifelse(Trisomy12 == 1, "present","absent")),
88
         Concentration = as.factor(Concentration))
89
```
90
91
Association test using Student's t-test.
92
```{r}
93
pTab <- group_by(plotTab, Drug, Concentration) %>% 
94
  do(data.frame(p = t.test(viab ~ Trisomy12, .)$p.value)) %>%
95
  mutate(p = format(p, digits =2, scientific = FALSE))
96
```
97
98
Bee swarm plot.
99
```{r tris12confirm, fig.width=8, fig.height=12, warning=FALSE, fig.path=plotDir, dev=c("png", "pdf")}
100
pList <- group_by(plotTab, Drug) %>% 
101
  do(plots = ggplot(., aes(x=Concentration, y = viab)) + 
102
       stat_boxplot(geom = "errorbar", width = 0.3,
103
                    position = position_dodge(width=0.6), 
104
                    aes(dodge = Trisomy12)) +
105
       geom_boxplot(outlier.shape = NA, position = position_dodge(width=0.6), 
106
                    col="black", width=0.5, aes(dodge = Trisomy12)) + 
107
       geom_beeswarm(size=1,dodge.width=0.6, aes(col=Trisomy12)) +
108
       theme_classic() +
109
       scale_y_continuous(expand = c(0, 0),breaks=seq(0,1.2,0.2)) +
110
       coord_cartesian(ylim = c(0,1.3)) +
111
       xlab("Concentration (µM)") + ylab("Viability") + 
112
       ggtitle(unique(.$Drug)) +
113
       geom_text(data=filter(pTab, Drug == unique(.$Drug)), y = 1.25, 
114
                 aes(x=Concentration, label=sprintf("p=%s",p)), size = 5) + 
115
       theme(axis.line.x = element_blank(),
116
             axis.ticks.x = element_blank(),
117
             axis.text  = element_text(size=15),
118
             axis.title = element_text(size =15),
119
             legend.text = element_text(size=13),
120
             legend.title = element_text(size=15),
121
             plot.title = element_text(face="bold", hjust=0.5, size=17),
122
             plot.margin = unit(c(0.5,0,0.5,0), "cm"))) 
123
124
grid.arrange(grobs = pList$plots, ncol =1)
125
```
126
Consistent  with  the  data  from  the  screen,  samples  with  trisomy  12  showed  higher  sensitivity  to  MEK/ERK  inhibitors.
127
128
129
```{r, include=!exists(".standalone"), eval=!exists(".standalone")}
130
sessionInfo()
131
```
132
133
```{r, message=FALSE, warning=FALSE, include=FALSE}
134
rm(list=ls())
135
```