Diff of /yolov5/val.py [000000] .. [f26a44]

Switch to side-by-side view

--- a
+++ b/yolov5/val.py
@@ -0,0 +1,368 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Validate a trained YOLOv5 model accuracy on a custom dataset
+
+Usage:
+    $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
+"""
+
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+from threading import Thread
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.datasets import create_dataloader
+from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
+                           coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
+                           scale_coords, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, ap_per_class
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, time_sync
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    # Save one txt result
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, 'a') as f:
+            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    for p, b in zip(predn.tolist(), box.tolist()):
+        jdict.append({'image_id': image_id,
+                      'category_id': class_map[int(p[5])],
+                      'bbox': [round(x, 3) for x in b],
+                      'score': round(p[4], 5)})
+
+
+def process_batch(detections, labels, iouv):
+    """
+    Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
+    Arguments:
+        detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (Array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (Array[N, 10]), for 10 IoU levels
+    """
+    correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
+    iou = box_iou(labels[:, 1:], detections[:, :4])
+    x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5]))  # IoU above threshold and classes match
+    if x[0].shape[0]:
+        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detection, iou]
+        if x[0].shape[0] > 1:
+            matches = matches[matches[:, 2].argsort()[::-1]]
+            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+            # matches = matches[matches[:, 2].argsort()[::-1]]
+            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+        matches = torch.Tensor(matches).to(iouv.device)
+        correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
+    return correct
+
+
+@torch.no_grad()
+def run(data,
+        weights=None,  # model.pt path(s)
+        batch_size=32,  # batch size
+        imgsz=640,  # inference size (pixels)
+        conf_thres=0.001,  # confidence threshold
+        iou_thres=0.6,  # NMS IoU threshold
+        task='val',  # train, val, test, speed or study
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        single_cls=False,  # treat as single-class dataset
+        augment=False,  # augmented inference
+        verbose=False,  # verbose output
+        save_txt=False,  # save results to *.txt
+        save_hybrid=False,  # save label+prediction hybrid results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_json=False,  # save a COCO-JSON results file
+        project=ROOT / 'runs/val',  # save to project/name
+        name='exp',  # save to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=True,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        model=None,
+        dataloader=None,
+        save_dir=Path(''),
+        plots=True,
+        callbacks=Callbacks(),
+        compute_loss=None,
+        ):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, engine = next(model.parameters()).device, True, False  # get model device, PyTorch model
+
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn)
+        stride, pt, engine = model.stride, model.pt, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half &= (pt or engine) and device.type != 'cpu'  # half precision only supported by PyTorch on CUDA
+        if pt:
+            model.model.half() if half else model.model.float()
+        elif engine:
+            batch_size = model.batch_size
+        else:
+            half = False
+            batch_size = 1  # export.py models default to batch-size 1
+            device = torch.device('cpu')
+            LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt')  # COCO dataset
+    nc = 1 if single_cls else int(data['nc'])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half)  # warmup
+        pad = 0.0 if task == 'speed' else 0.5
+        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
+        dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
+                                       prefix=colorstr(f'{task}: '))[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
+    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+    loss = torch.zeros(3, device=device)
+    jdict, stats, ap, ap_class = [], [], [], []
+    pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
+    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+        t1 = time_sync()
+        if pt or engine:
+            im = im.to(device, non_blocking=True)
+            targets = targets.to(device)
+        im = im.half() if half else im.float()  # uint8 to fp16/32
+        im /= 255  # 0 - 255 to 0.0 - 1.0
+        nb, _, height, width = im.shape  # batch size, channels, height, width
+        t2 = time_sync()
+        dt[0] += t2 - t1
+
+        # Inference
+        out, train_out = model(im) if training else model(im, augment=augment, val=True)  # inference, loss outputs
+        dt[1] += time_sync() - t2
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss([x.float() for x in train_out], targets)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        t3 = time_sync()
+        out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
+        dt[2] += time_sync() - t3
+
+        # Metrics
+        for si, pred in enumerate(out):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl = len(labels)
+            tcls = labels[:, 0].tolist() if nl else []  # target class
+            path, shape = Path(paths[si]), shapes[si][0]
+            seen += 1
+
+            if len(pred) == 0:
+                if nl:
+                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
+                continue
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct = process_batch(predn, labelsn, iouv)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            else:
+                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
+            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))  # (correct, conf, pcls, tcls)
+
+            # Save/log
+            if save_txt:
+                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
+            if save_json:
+                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
+            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
+            Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
+            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
+            Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
+
+    # Compute metrics
+    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
+        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
+    else:
+        nt = torch.zeros(1)
+
+    # Print results
+    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
+    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(ap_class):
+            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+    # Print speeds
+    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+        callbacks.run('on_val_end')
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
+        anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json')  # annotations json
+        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
+        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+        with open(pred_json, 'w') as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            check_requirements(['pycocotools'])
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            eval = COCOeval(anno, pred, 'bbox')
+            if is_coco:
+                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]  # image IDs to evaluate
+            eval.evaluate()
+            eval.accumulate()
+            eval.summarize()
+            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
+        except Exception as e:
+            LOGGER.info(f'pycocotools unable to run: {e}')
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    maps = np.zeros(nc) + map
+    for i, c in enumerate(ap_class):
+        maps[c] = ap[i]
+    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
+    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+    parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(FILE.stem, opt)
+    return opt
+
+
+def main(opt):
+    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+    if opt.task in ('train', 'val', 'test'):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = True  # FP16 for fastest results
+        if opt.task == 'speed':  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == 'study':  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt='%10.4g')  # save
+            os.system('zip -r study.zip study_*.txt')
+            plot_val_study(x=x)  # plot
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)