|
a |
|
b/yolov5/val.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Validate a trained YOLOv5 model accuracy on a custom dataset |
|
|
4 |
|
|
|
5 |
Usage: |
|
|
6 |
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 |
|
|
7 |
""" |
|
|
8 |
|
|
|
9 |
import argparse |
|
|
10 |
import json |
|
|
11 |
import os |
|
|
12 |
import sys |
|
|
13 |
from pathlib import Path |
|
|
14 |
from threading import Thread |
|
|
15 |
|
|
|
16 |
import numpy as np |
|
|
17 |
import torch |
|
|
18 |
from tqdm import tqdm |
|
|
19 |
|
|
|
20 |
FILE = Path(__file__).resolve() |
|
|
21 |
ROOT = FILE.parents[0] # YOLOv5 root directory |
|
|
22 |
if str(ROOT) not in sys.path: |
|
|
23 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
24 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
25 |
|
|
|
26 |
from models.common import DetectMultiBackend |
|
|
27 |
from utils.callbacks import Callbacks |
|
|
28 |
from utils.datasets import create_dataloader |
|
|
29 |
from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml, |
|
|
30 |
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, |
|
|
31 |
scale_coords, xywh2xyxy, xyxy2xywh) |
|
|
32 |
from utils.metrics import ConfusionMatrix, ap_per_class |
|
|
33 |
from utils.plots import output_to_target, plot_images, plot_val_study |
|
|
34 |
from utils.torch_utils import select_device, time_sync |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
def save_one_txt(predn, save_conf, shape, file): |
|
|
38 |
# Save one txt result |
|
|
39 |
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh |
|
|
40 |
for *xyxy, conf, cls in predn.tolist(): |
|
|
41 |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|
|
42 |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format |
|
|
43 |
with open(file, 'a') as f: |
|
|
44 |
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
def save_one_json(predn, jdict, path, class_map): |
|
|
48 |
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} |
|
|
49 |
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
|
50 |
box = xyxy2xywh(predn[:, :4]) # xywh |
|
|
51 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|
|
52 |
for p, b in zip(predn.tolist(), box.tolist()): |
|
|
53 |
jdict.append({'image_id': image_id, |
|
|
54 |
'category_id': class_map[int(p[5])], |
|
|
55 |
'bbox': [round(x, 3) for x in b], |
|
|
56 |
'score': round(p[4], 5)}) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def process_batch(detections, labels, iouv): |
|
|
60 |
""" |
|
|
61 |
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. |
|
|
62 |
Arguments: |
|
|
63 |
detections (Array[N, 6]), x1, y1, x2, y2, conf, class |
|
|
64 |
labels (Array[M, 5]), class, x1, y1, x2, y2 |
|
|
65 |
Returns: |
|
|
66 |
correct (Array[N, 10]), for 10 IoU levels |
|
|
67 |
""" |
|
|
68 |
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device) |
|
|
69 |
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
70 |
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match |
|
|
71 |
if x[0].shape[0]: |
|
|
72 |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou] |
|
|
73 |
if x[0].shape[0] > 1: |
|
|
74 |
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
75 |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
76 |
# matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
77 |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
78 |
matches = torch.Tensor(matches).to(iouv.device) |
|
|
79 |
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv |
|
|
80 |
return correct |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
@torch.no_grad() |
|
|
84 |
def run(data, |
|
|
85 |
weights=None, # model.pt path(s) |
|
|
86 |
batch_size=32, # batch size |
|
|
87 |
imgsz=640, # inference size (pixels) |
|
|
88 |
conf_thres=0.001, # confidence threshold |
|
|
89 |
iou_thres=0.6, # NMS IoU threshold |
|
|
90 |
task='val', # train, val, test, speed or study |
|
|
91 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
92 |
single_cls=False, # treat as single-class dataset |
|
|
93 |
augment=False, # augmented inference |
|
|
94 |
verbose=False, # verbose output |
|
|
95 |
save_txt=False, # save results to *.txt |
|
|
96 |
save_hybrid=False, # save label+prediction hybrid results to *.txt |
|
|
97 |
save_conf=False, # save confidences in --save-txt labels |
|
|
98 |
save_json=False, # save a COCO-JSON results file |
|
|
99 |
project=ROOT / 'runs/val', # save to project/name |
|
|
100 |
name='exp', # save to project/name |
|
|
101 |
exist_ok=False, # existing project/name ok, do not increment |
|
|
102 |
half=True, # use FP16 half-precision inference |
|
|
103 |
dnn=False, # use OpenCV DNN for ONNX inference |
|
|
104 |
model=None, |
|
|
105 |
dataloader=None, |
|
|
106 |
save_dir=Path(''), |
|
|
107 |
plots=True, |
|
|
108 |
callbacks=Callbacks(), |
|
|
109 |
compute_loss=None, |
|
|
110 |
): |
|
|
111 |
# Initialize/load model and set device |
|
|
112 |
training = model is not None |
|
|
113 |
if training: # called by train.py |
|
|
114 |
device, pt, engine = next(model.parameters()).device, True, False # get model device, PyTorch model |
|
|
115 |
|
|
|
116 |
half &= device.type != 'cpu' # half precision only supported on CUDA |
|
|
117 |
model.half() if half else model.float() |
|
|
118 |
else: # called directly |
|
|
119 |
device = select_device(device, batch_size=batch_size) |
|
|
120 |
|
|
|
121 |
# Directories |
|
|
122 |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run |
|
|
123 |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir |
|
|
124 |
|
|
|
125 |
# Load model |
|
|
126 |
model = DetectMultiBackend(weights, device=device, dnn=dnn) |
|
|
127 |
stride, pt, engine = model.stride, model.pt, model.engine |
|
|
128 |
imgsz = check_img_size(imgsz, s=stride) # check image size |
|
|
129 |
half &= (pt or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA |
|
|
130 |
if pt: |
|
|
131 |
model.model.half() if half else model.model.float() |
|
|
132 |
elif engine: |
|
|
133 |
batch_size = model.batch_size |
|
|
134 |
else: |
|
|
135 |
half = False |
|
|
136 |
batch_size = 1 # export.py models default to batch-size 1 |
|
|
137 |
device = torch.device('cpu') |
|
|
138 |
LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends') |
|
|
139 |
|
|
|
140 |
# Data |
|
|
141 |
data = check_dataset(data) # check |
|
|
142 |
|
|
|
143 |
# Configure |
|
|
144 |
model.eval() |
|
|
145 |
is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset |
|
|
146 |
nc = 1 if single_cls else int(data['nc']) # number of classes |
|
|
147 |
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 |
|
|
148 |
niou = iouv.numel() |
|
|
149 |
|
|
|
150 |
# Dataloader |
|
|
151 |
if not training: |
|
|
152 |
model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half) # warmup |
|
|
153 |
pad = 0.0 if task == 'speed' else 0.5 |
|
|
154 |
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images |
|
|
155 |
dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt, |
|
|
156 |
prefix=colorstr(f'{task}: '))[0] |
|
|
157 |
|
|
|
158 |
seen = 0 |
|
|
159 |
confusion_matrix = ConfusionMatrix(nc=nc) |
|
|
160 |
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|
|
161 |
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) |
|
|
162 |
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
|
163 |
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 |
|
|
164 |
loss = torch.zeros(3, device=device) |
|
|
165 |
jdict, stats, ap, ap_class = [], [], [], [] |
|
|
166 |
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar |
|
|
167 |
for batch_i, (im, targets, paths, shapes) in enumerate(pbar): |
|
|
168 |
t1 = time_sync() |
|
|
169 |
if pt or engine: |
|
|
170 |
im = im.to(device, non_blocking=True) |
|
|
171 |
targets = targets.to(device) |
|
|
172 |
im = im.half() if half else im.float() # uint8 to fp16/32 |
|
|
173 |
im /= 255 # 0 - 255 to 0.0 - 1.0 |
|
|
174 |
nb, _, height, width = im.shape # batch size, channels, height, width |
|
|
175 |
t2 = time_sync() |
|
|
176 |
dt[0] += t2 - t1 |
|
|
177 |
|
|
|
178 |
# Inference |
|
|
179 |
out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs |
|
|
180 |
dt[1] += time_sync() - t2 |
|
|
181 |
|
|
|
182 |
# Loss |
|
|
183 |
if compute_loss: |
|
|
184 |
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls |
|
|
185 |
|
|
|
186 |
# NMS |
|
|
187 |
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels |
|
|
188 |
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling |
|
|
189 |
t3 = time_sync() |
|
|
190 |
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) |
|
|
191 |
dt[2] += time_sync() - t3 |
|
|
192 |
|
|
|
193 |
# Metrics |
|
|
194 |
for si, pred in enumerate(out): |
|
|
195 |
labels = targets[targets[:, 0] == si, 1:] |
|
|
196 |
nl = len(labels) |
|
|
197 |
tcls = labels[:, 0].tolist() if nl else [] # target class |
|
|
198 |
path, shape = Path(paths[si]), shapes[si][0] |
|
|
199 |
seen += 1 |
|
|
200 |
|
|
|
201 |
if len(pred) == 0: |
|
|
202 |
if nl: |
|
|
203 |
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
|
204 |
continue |
|
|
205 |
|
|
|
206 |
# Predictions |
|
|
207 |
if single_cls: |
|
|
208 |
pred[:, 5] = 0 |
|
|
209 |
predn = pred.clone() |
|
|
210 |
scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred |
|
|
211 |
|
|
|
212 |
# Evaluate |
|
|
213 |
if nl: |
|
|
214 |
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes |
|
|
215 |
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels |
|
|
216 |
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels |
|
|
217 |
correct = process_batch(predn, labelsn, iouv) |
|
|
218 |
if plots: |
|
|
219 |
confusion_matrix.process_batch(predn, labelsn) |
|
|
220 |
else: |
|
|
221 |
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) |
|
|
222 |
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) |
|
|
223 |
|
|
|
224 |
# Save/log |
|
|
225 |
if save_txt: |
|
|
226 |
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) |
|
|
227 |
if save_json: |
|
|
228 |
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary |
|
|
229 |
callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) |
|
|
230 |
|
|
|
231 |
# Plot images |
|
|
232 |
if plots and batch_i < 3: |
|
|
233 |
f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels |
|
|
234 |
Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start() |
|
|
235 |
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions |
|
|
236 |
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start() |
|
|
237 |
|
|
|
238 |
# Compute metrics |
|
|
239 |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy |
|
|
240 |
if len(stats) and stats[0].any(): |
|
|
241 |
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) |
|
|
242 |
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 |
|
|
243 |
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|
|
244 |
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class |
|
|
245 |
else: |
|
|
246 |
nt = torch.zeros(1) |
|
|
247 |
|
|
|
248 |
# Print results |
|
|
249 |
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format |
|
|
250 |
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
251 |
|
|
|
252 |
# Print results per class |
|
|
253 |
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): |
|
|
254 |
for i, c in enumerate(ap_class): |
|
|
255 |
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
256 |
|
|
|
257 |
# Print speeds |
|
|
258 |
t = tuple(x / seen * 1E3 for x in dt) # speeds per image |
|
|
259 |
if not training: |
|
|
260 |
shape = (batch_size, 3, imgsz, imgsz) |
|
|
261 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) |
|
|
262 |
|
|
|
263 |
# Plots |
|
|
264 |
if plots: |
|
|
265 |
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
|
266 |
callbacks.run('on_val_end') |
|
|
267 |
|
|
|
268 |
# Save JSON |
|
|
269 |
if save_json and len(jdict): |
|
|
270 |
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights |
|
|
271 |
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json |
|
|
272 |
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json |
|
|
273 |
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') |
|
|
274 |
with open(pred_json, 'w') as f: |
|
|
275 |
json.dump(jdict, f) |
|
|
276 |
|
|
|
277 |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
|
278 |
check_requirements(['pycocotools']) |
|
|
279 |
from pycocotools.coco import COCO |
|
|
280 |
from pycocotools.cocoeval import COCOeval |
|
|
281 |
|
|
|
282 |
anno = COCO(anno_json) # init annotations api |
|
|
283 |
pred = anno.loadRes(pred_json) # init predictions api |
|
|
284 |
eval = COCOeval(anno, pred, 'bbox') |
|
|
285 |
if is_coco: |
|
|
286 |
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate |
|
|
287 |
eval.evaluate() |
|
|
288 |
eval.accumulate() |
|
|
289 |
eval.summarize() |
|
|
290 |
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) |
|
|
291 |
except Exception as e: |
|
|
292 |
LOGGER.info(f'pycocotools unable to run: {e}') |
|
|
293 |
|
|
|
294 |
# Return results |
|
|
295 |
model.float() # for training |
|
|
296 |
if not training: |
|
|
297 |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
|
298 |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
|
299 |
maps = np.zeros(nc) + map |
|
|
300 |
for i, c in enumerate(ap_class): |
|
|
301 |
maps[c] = ap[i] |
|
|
302 |
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
def parse_opt(): |
|
|
306 |
parser = argparse.ArgumentParser() |
|
|
307 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
308 |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') |
|
|
309 |
parser.add_argument('--batch-size', type=int, default=32, help='batch size') |
|
|
310 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
|
311 |
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') |
|
|
312 |
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') |
|
|
313 |
parser.add_argument('--task', default='val', help='train, val, test, speed or study') |
|
|
314 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
315 |
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
|
316 |
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
|
317 |
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
|
318 |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
|
319 |
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') |
|
|
320 |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
|
321 |
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') |
|
|
322 |
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') |
|
|
323 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
324 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
325 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
326 |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
|
327 |
opt = parser.parse_args() |
|
|
328 |
opt.data = check_yaml(opt.data) # check YAML |
|
|
329 |
opt.save_json |= opt.data.endswith('coco.yaml') |
|
|
330 |
opt.save_txt |= opt.save_hybrid |
|
|
331 |
print_args(FILE.stem, opt) |
|
|
332 |
return opt |
|
|
333 |
|
|
|
334 |
|
|
|
335 |
def main(opt): |
|
|
336 |
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
|
337 |
|
|
|
338 |
if opt.task in ('train', 'val', 'test'): # run normally |
|
|
339 |
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 |
|
|
340 |
LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.') |
|
|
341 |
run(**vars(opt)) |
|
|
342 |
|
|
|
343 |
else: |
|
|
344 |
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] |
|
|
345 |
opt.half = True # FP16 for fastest results |
|
|
346 |
if opt.task == 'speed': # speed benchmarks |
|
|
347 |
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... |
|
|
348 |
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False |
|
|
349 |
for opt.weights in weights: |
|
|
350 |
run(**vars(opt), plots=False) |
|
|
351 |
|
|
|
352 |
elif opt.task == 'study': # speed vs mAP benchmarks |
|
|
353 |
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... |
|
|
354 |
for opt.weights in weights: |
|
|
355 |
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to |
|
|
356 |
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis |
|
|
357 |
for opt.imgsz in x: # img-size |
|
|
358 |
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') |
|
|
359 |
r, _, t = run(**vars(opt), plots=False) |
|
|
360 |
y.append(r + t) # results and times |
|
|
361 |
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
362 |
os.system('zip -r study.zip study_*.txt') |
|
|
363 |
plot_val_study(x=x) # plot |
|
|
364 |
|
|
|
365 |
|
|
|
366 |
if __name__ == "__main__": |
|
|
367 |
opt = parse_opt() |
|
|
368 |
main(opt) |