|
a |
|
b/yolov5/utils/torch_utils.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
PyTorch utils |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import datetime |
|
|
7 |
import math |
|
|
8 |
import os |
|
|
9 |
import platform |
|
|
10 |
import subprocess |
|
|
11 |
import time |
|
|
12 |
from contextlib import contextmanager |
|
|
13 |
from copy import deepcopy |
|
|
14 |
from pathlib import Path |
|
|
15 |
|
|
|
16 |
import torch |
|
|
17 |
import torch.distributed as dist |
|
|
18 |
import torch.nn as nn |
|
|
19 |
import torch.nn.functional as F |
|
|
20 |
|
|
|
21 |
from utils.general import LOGGER |
|
|
22 |
|
|
|
23 |
try: |
|
|
24 |
import thop # for FLOPs computation |
|
|
25 |
except ImportError: |
|
|
26 |
thop = None |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
@contextmanager |
|
|
30 |
def torch_distributed_zero_first(local_rank: int): |
|
|
31 |
""" |
|
|
32 |
Decorator to make all processes in distributed training wait for each local_master to do something. |
|
|
33 |
""" |
|
|
34 |
if local_rank not in [-1, 0]: |
|
|
35 |
dist.barrier(device_ids=[local_rank]) |
|
|
36 |
yield |
|
|
37 |
if local_rank == 0: |
|
|
38 |
dist.barrier(device_ids=[0]) |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
def date_modified(path=__file__): |
|
|
42 |
# return human-readable file modification date, i.e. '2021-3-26' |
|
|
43 |
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) |
|
|
44 |
return f'{t.year}-{t.month}-{t.day}' |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
def git_describe(path=Path(__file__).parent): # path must be a directory |
|
|
48 |
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe |
|
|
49 |
s = f'git -C {path} describe --tags --long --always' |
|
|
50 |
try: |
|
|
51 |
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] |
|
|
52 |
except subprocess.CalledProcessError as e: |
|
|
53 |
return '' # not a git repository |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def select_device(device='', batch_size=None, newline=True): |
|
|
57 |
# device = 'cpu' or '0' or '0,1,2,3' |
|
|
58 |
s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string |
|
|
59 |
device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0' |
|
|
60 |
cpu = device == 'cpu' |
|
|
61 |
if cpu: |
|
|
62 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False |
|
|
63 |
elif device: # non-cpu device requested |
|
|
64 |
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable |
|
|
65 |
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability |
|
|
66 |
|
|
|
67 |
cuda = not cpu and torch.cuda.is_available() |
|
|
68 |
if cuda: |
|
|
69 |
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 |
|
|
70 |
n = len(devices) # device count |
|
|
71 |
if n > 1 and batch_size: # check batch_size is divisible by device_count |
|
|
72 |
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' |
|
|
73 |
space = ' ' * (len(s) + 1) |
|
|
74 |
for i, d in enumerate(devices): |
|
|
75 |
p = torch.cuda.get_device_properties(i) |
|
|
76 |
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2:.0f}MiB)\n" # bytes to MB |
|
|
77 |
else: |
|
|
78 |
s += 'CPU\n' |
|
|
79 |
|
|
|
80 |
if not newline: |
|
|
81 |
s = s.rstrip() |
|
|
82 |
LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe |
|
|
83 |
return torch.device('cuda:0' if cuda else 'cpu') |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
def time_sync(): |
|
|
87 |
# pytorch-accurate time |
|
|
88 |
if torch.cuda.is_available(): |
|
|
89 |
torch.cuda.synchronize() |
|
|
90 |
return time.time() |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
def profile(input, ops, n=10, device=None): |
|
|
94 |
# YOLOv5 speed/memory/FLOPs profiler |
|
|
95 |
# |
|
|
96 |
# Usage: |
|
|
97 |
# input = torch.randn(16, 3, 640, 640) |
|
|
98 |
# m1 = lambda x: x * torch.sigmoid(x) |
|
|
99 |
# m2 = nn.SiLU() |
|
|
100 |
# profile(input, [m1, m2], n=100) # profile over 100 iterations |
|
|
101 |
|
|
|
102 |
results = [] |
|
|
103 |
device = device or select_device() |
|
|
104 |
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" |
|
|
105 |
f"{'input':>24s}{'output':>24s}") |
|
|
106 |
|
|
|
107 |
for x in input if isinstance(input, list) else [input]: |
|
|
108 |
x = x.to(device) |
|
|
109 |
x.requires_grad = True |
|
|
110 |
for m in ops if isinstance(ops, list) else [ops]: |
|
|
111 |
m = m.to(device) if hasattr(m, 'to') else m # device |
|
|
112 |
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m |
|
|
113 |
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward |
|
|
114 |
try: |
|
|
115 |
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs |
|
|
116 |
except: |
|
|
117 |
flops = 0 |
|
|
118 |
|
|
|
119 |
try: |
|
|
120 |
for _ in range(n): |
|
|
121 |
t[0] = time_sync() |
|
|
122 |
y = m(x) |
|
|
123 |
t[1] = time_sync() |
|
|
124 |
try: |
|
|
125 |
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() |
|
|
126 |
t[2] = time_sync() |
|
|
127 |
except Exception as e: # no backward method |
|
|
128 |
# print(e) # for debug |
|
|
129 |
t[2] = float('nan') |
|
|
130 |
tf += (t[1] - t[0]) * 1000 / n # ms per op forward |
|
|
131 |
tb += (t[2] - t[1]) * 1000 / n # ms per op backward |
|
|
132 |
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) |
|
|
133 |
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' |
|
|
134 |
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' |
|
|
135 |
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters |
|
|
136 |
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') |
|
|
137 |
results.append([p, flops, mem, tf, tb, s_in, s_out]) |
|
|
138 |
except Exception as e: |
|
|
139 |
print(e) |
|
|
140 |
results.append(None) |
|
|
141 |
torch.cuda.empty_cache() |
|
|
142 |
return results |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
def is_parallel(model): |
|
|
146 |
# Returns True if model is of type DP or DDP |
|
|
147 |
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
def de_parallel(model): |
|
|
151 |
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP |
|
|
152 |
return model.module if is_parallel(model) else model |
|
|
153 |
|
|
|
154 |
|
|
|
155 |
def initialize_weights(model): |
|
|
156 |
for m in model.modules(): |
|
|
157 |
t = type(m) |
|
|
158 |
if t is nn.Conv2d: |
|
|
159 |
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
|
160 |
elif t is nn.BatchNorm2d: |
|
|
161 |
m.eps = 1e-3 |
|
|
162 |
m.momentum = 0.03 |
|
|
163 |
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: |
|
|
164 |
m.inplace = True |
|
|
165 |
|
|
|
166 |
|
|
|
167 |
def find_modules(model, mclass=nn.Conv2d): |
|
|
168 |
# Finds layer indices matching module class 'mclass' |
|
|
169 |
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] |
|
|
170 |
|
|
|
171 |
|
|
|
172 |
def sparsity(model): |
|
|
173 |
# Return global model sparsity |
|
|
174 |
a, b = 0, 0 |
|
|
175 |
for p in model.parameters(): |
|
|
176 |
a += p.numel() |
|
|
177 |
b += (p == 0).sum() |
|
|
178 |
return b / a |
|
|
179 |
|
|
|
180 |
|
|
|
181 |
def prune(model, amount=0.3): |
|
|
182 |
# Prune model to requested global sparsity |
|
|
183 |
import torch.nn.utils.prune as prune |
|
|
184 |
print('Pruning model... ', end='') |
|
|
185 |
for name, m in model.named_modules(): |
|
|
186 |
if isinstance(m, nn.Conv2d): |
|
|
187 |
prune.l1_unstructured(m, name='weight', amount=amount) # prune |
|
|
188 |
prune.remove(m, 'weight') # make permanent |
|
|
189 |
print(' %.3g global sparsity' % sparsity(model)) |
|
|
190 |
|
|
|
191 |
|
|
|
192 |
def fuse_conv_and_bn(conv, bn): |
|
|
193 |
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ |
|
|
194 |
fusedconv = nn.Conv2d(conv.in_channels, |
|
|
195 |
conv.out_channels, |
|
|
196 |
kernel_size=conv.kernel_size, |
|
|
197 |
stride=conv.stride, |
|
|
198 |
padding=conv.padding, |
|
|
199 |
groups=conv.groups, |
|
|
200 |
bias=True).requires_grad_(False).to(conv.weight.device) |
|
|
201 |
|
|
|
202 |
# prepare filters |
|
|
203 |
w_conv = conv.weight.clone().view(conv.out_channels, -1) |
|
|
204 |
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) |
|
|
205 |
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) |
|
|
206 |
|
|
|
207 |
# prepare spatial bias |
|
|
208 |
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias |
|
|
209 |
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) |
|
|
210 |
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) |
|
|
211 |
|
|
|
212 |
return fusedconv |
|
|
213 |
|
|
|
214 |
|
|
|
215 |
def model_info(model, verbose=False, img_size=640): |
|
|
216 |
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] |
|
|
217 |
n_p = sum(x.numel() for x in model.parameters()) # number parameters |
|
|
218 |
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients |
|
|
219 |
if verbose: |
|
|
220 |
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") |
|
|
221 |
for i, (name, p) in enumerate(model.named_parameters()): |
|
|
222 |
name = name.replace('module_list.', '') |
|
|
223 |
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % |
|
|
224 |
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) |
|
|
225 |
|
|
|
226 |
try: # FLOPs |
|
|
227 |
from thop import profile |
|
|
228 |
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 |
|
|
229 |
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input |
|
|
230 |
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs |
|
|
231 |
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float |
|
|
232 |
fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs |
|
|
233 |
except (ImportError, Exception): |
|
|
234 |
fs = '' |
|
|
235 |
|
|
|
236 |
LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") |
|
|
237 |
|
|
|
238 |
|
|
|
239 |
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) |
|
|
240 |
# scales img(bs,3,y,x) by ratio constrained to gs-multiple |
|
|
241 |
if ratio == 1.0: |
|
|
242 |
return img |
|
|
243 |
else: |
|
|
244 |
h, w = img.shape[2:] |
|
|
245 |
s = (int(h * ratio), int(w * ratio)) # new size |
|
|
246 |
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize |
|
|
247 |
if not same_shape: # pad/crop img |
|
|
248 |
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) |
|
|
249 |
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean |
|
|
250 |
|
|
|
251 |
|
|
|
252 |
def copy_attr(a, b, include=(), exclude=()): |
|
|
253 |
# Copy attributes from b to a, options to only include [...] and to exclude [...] |
|
|
254 |
for k, v in b.__dict__.items(): |
|
|
255 |
if (len(include) and k not in include) or k.startswith('_') or k in exclude: |
|
|
256 |
continue |
|
|
257 |
else: |
|
|
258 |
setattr(a, k, v) |
|
|
259 |
|
|
|
260 |
|
|
|
261 |
class EarlyStopping: |
|
|
262 |
# YOLOv5 simple early stopper |
|
|
263 |
def __init__(self, patience=30): |
|
|
264 |
self.best_fitness = 0.0 # i.e. mAP |
|
|
265 |
self.best_epoch = 0 |
|
|
266 |
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop |
|
|
267 |
self.possible_stop = False # possible stop may occur next epoch |
|
|
268 |
|
|
|
269 |
def __call__(self, epoch, fitness): |
|
|
270 |
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training |
|
|
271 |
self.best_epoch = epoch |
|
|
272 |
self.best_fitness = fitness |
|
|
273 |
delta = epoch - self.best_epoch # epochs without improvement |
|
|
274 |
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch |
|
|
275 |
stop = delta >= self.patience # stop training if patience exceeded |
|
|
276 |
if stop: |
|
|
277 |
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' |
|
|
278 |
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' |
|
|
279 |
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' |
|
|
280 |
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') |
|
|
281 |
return stop |
|
|
282 |
|
|
|
283 |
|
|
|
284 |
class ModelEMA: |
|
|
285 |
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models |
|
|
286 |
Keep a moving average of everything in the model state_dict (parameters and buffers). |
|
|
287 |
This is intended to allow functionality like |
|
|
288 |
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
|
289 |
A smoothed version of the weights is necessary for some training schemes to perform well. |
|
|
290 |
This class is sensitive where it is initialized in the sequence of model init, |
|
|
291 |
GPU assignment and distributed training wrappers. |
|
|
292 |
""" |
|
|
293 |
|
|
|
294 |
def __init__(self, model, decay=0.9999, updates=0): |
|
|
295 |
# Create EMA |
|
|
296 |
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA |
|
|
297 |
# if next(model.parameters()).device.type != 'cpu': |
|
|
298 |
# self.ema.half() # FP16 EMA |
|
|
299 |
self.updates = updates # number of EMA updates |
|
|
300 |
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) |
|
|
301 |
for p in self.ema.parameters(): |
|
|
302 |
p.requires_grad_(False) |
|
|
303 |
|
|
|
304 |
def update(self, model): |
|
|
305 |
# Update EMA parameters |
|
|
306 |
with torch.no_grad(): |
|
|
307 |
self.updates += 1 |
|
|
308 |
d = self.decay(self.updates) |
|
|
309 |
|
|
|
310 |
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict |
|
|
311 |
for k, v in self.ema.state_dict().items(): |
|
|
312 |
if v.dtype.is_floating_point: |
|
|
313 |
v *= d |
|
|
314 |
v += (1 - d) * msd[k].detach() |
|
|
315 |
|
|
|
316 |
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): |
|
|
317 |
# Update EMA attributes |
|
|
318 |
copy_attr(self.ema, model, include, exclude) |