Diff of /yolov5/utils/datasets.py [000000] .. [f26a44]

Switch to side-by-side view

--- a
+++ b/yolov5/utils/datasets.py
@@ -0,0 +1,1036 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Dataloaders and dataset utils
+"""
+
+import glob
+import hashlib
+import json
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+from pathlib import Path
+from threading import Thread
+from zipfile import ZipFile
+
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+import yaml
+from PIL import ExifTags, Image, ImageOps
+from torch.utils.data import DataLoader, Dataset, dataloader, distributed
+from tqdm import tqdm
+
+from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
+from utils.general import (LOGGER, check_dataset, check_requirements, check_yaml, clean_str, segments2boxes, xyn2xy,
+                           xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']  # acceptable image suffixes
+VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))  # DPP
+NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of multiprocessing threads
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+    if ExifTags.TAGS[orientation] == 'Orientation':
+        break
+
+
+def get_hash(paths):
+    # Returns a single hash value of a list of paths (files or dirs)
+    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
+    h = hashlib.md5(str(size).encode())  # hash sizes
+    h.update(''.join(paths).encode())  # hash paths
+    return h.hexdigest()  # return hash
+
+
+def exif_size(img):
+    # Returns exif-corrected PIL size
+    s = img.size  # (width, height)
+    try:
+        rotation = dict(img._getexif().items())[orientation]
+        if rotation == 6:  # rotation 270
+            s = (s[1], s[0])
+        elif rotation == 8:  # rotation 90
+            s = (s[1], s[0])
+    except:
+        pass
+
+    return s
+
+
+def exif_transpose(image):
+    """
+    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
+    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
+
+    :param image: The image to transpose.
+    :return: An image.
+    """
+    exif = image.getexif()
+    orientation = exif.get(0x0112, 1)  # default 1
+    if orientation > 1:
+        method = {2: Image.FLIP_LEFT_RIGHT,
+                  3: Image.ROTATE_180,
+                  4: Image.FLIP_TOP_BOTTOM,
+                  5: Image.TRANSPOSE,
+                  6: Image.ROTATE_270,
+                  7: Image.TRANSVERSE,
+                  8: Image.ROTATE_90,
+                  }.get(orientation)
+        if method is not None:
+            image = image.transpose(method)
+            del exif[0x0112]
+            image.info["exif"] = exif.tobytes()
+    return image
+
+
+def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
+                      rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False):
+    if rect and shuffle:
+        LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
+                                      augment=augment,  # augmentation
+                                      hyp=hyp,  # hyperparameters
+                                      rect=rect,  # rectangular batches
+                                      cache_images=cache,
+                                      single_cls=single_cls,
+                                      stride=int(stride),
+                                      pad=pad,
+                                      image_weights=image_weights,
+                                      prefix=prefix)
+
+    batch_size = min(batch_size, len(dataset))
+    nw = min([os.cpu_count() // WORLD_SIZE, batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    return loader(dataset,
+                  batch_size=batch_size,
+                  shuffle=shuffle and sampler is None,
+                  num_workers=nw,
+                  sampler=sampler,
+                  pin_memory=True,
+                  collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
+
+
+class InfiniteDataLoader(dataloader.DataLoader):
+    """ Dataloader that reuses workers
+
+    Uses same syntax as vanilla DataLoader
+    """
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+        self.iterator = super().__iter__()
+
+    def __len__(self):
+        return len(self.batch_sampler.sampler)
+
+    def __iter__(self):
+        for i in range(len(self)):
+            yield next(self.iterator)
+
+
+class _RepeatSampler:
+    """ Sampler that repeats forever
+
+    Args:
+        sampler (Sampler)
+    """
+
+    def __init__(self, sampler):
+        self.sampler = sampler
+
+    def __iter__(self):
+        while True:
+            yield from iter(self.sampler)
+
+
+class LoadImages:
+    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
+    def __init__(self, path, img_size=640, stride=32, auto=True):
+        p = str(Path(path).resolve())  # os-agnostic absolute path
+        if '*' in p:
+            files = sorted(glob.glob(p, recursive=True))  # glob
+        elif os.path.isdir(p):
+            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
+        elif os.path.isfile(p):
+            files = [p]  # files
+        else:
+            raise Exception(f'ERROR: {p} does not exist')
+
+        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
+        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
+        ni, nv = len(images), len(videos)
+
+        self.img_size = img_size
+        self.stride = stride
+        self.files = images + videos
+        self.nf = ni + nv  # number of files
+        self.video_flag = [False] * ni + [True] * nv
+        self.mode = 'image'
+        self.auto = auto
+        if any(videos):
+            self.new_video(videos[0])  # new video
+        else:
+            self.cap = None
+        assert self.nf > 0, f'No images or videos found in {p}. ' \
+                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
+
+    def __iter__(self):
+        self.count = 0
+        return self
+
+    def __next__(self):
+        if self.count == self.nf:
+            raise StopIteration
+        path = self.files[self.count]
+
+        if self.video_flag[self.count]:
+            # Read video
+            self.mode = 'video'
+            ret_val, img0 = self.cap.read()
+            if not ret_val:
+                self.count += 1
+                self.cap.release()
+                if self.count == self.nf:  # last video
+                    raise StopIteration
+                else:
+                    path = self.files[self.count]
+                    self.new_video(path)
+                    ret_val, img0 = self.cap.read()
+
+            self.frame += 1
+            s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
+
+        else:
+            # Read image
+            self.count += 1
+            img0 = cv2.imread(path)  # BGR
+            assert img0 is not None, f'Image Not Found {path}'
+            s = f'image {self.count}/{self.nf} {path}: '
+
+        # Padded resize
+        img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return path, img, img0, self.cap, s
+
+    def new_video(self, path):
+        self.frame = 0
+        self.cap = cv2.VideoCapture(path)
+        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+    def __len__(self):
+        return self.nf  # number of files
+
+
+class LoadWebcam:  # for inference
+    # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
+    def __init__(self, pipe='0', img_size=640, stride=32):
+        self.img_size = img_size
+        self.stride = stride
+        self.pipe = eval(pipe) if pipe.isnumeric() else pipe
+        self.cap = cv2.VideoCapture(self.pipe)  # video capture object
+        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if cv2.waitKey(1) == ord('q'):  # q to quit
+            self.cap.release()
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        # Read frame
+        ret_val, img0 = self.cap.read()
+        img0 = cv2.flip(img0, 1)  # flip left-right
+
+        # Print
+        assert ret_val, f'Camera Error {self.pipe}'
+        img_path = 'webcam.jpg'
+        s = f'webcam {self.count}: '
+
+        # Padded resize
+        img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return img_path, img, img0, None, s
+
+    def __len__(self):
+        return 0
+
+
+class LoadStreams:
+    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
+    def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
+        self.mode = 'stream'
+        self.img_size = img_size
+        self.stride = stride
+
+        if os.path.isfile(sources):
+            with open(sources) as f:
+                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
+        else:
+            sources = [sources]
+
+        n = len(sources)
+        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+        self.sources = [clean_str(x) for x in sources]  # clean source names for later
+        self.auto = auto
+        for i, s in enumerate(sources):  # index, source
+            # Start thread to read frames from video stream
+            st = f'{i + 1}/{n}: {s}... '
+            if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video
+                check_requirements(('pafy', 'youtube_dl'))
+                import pafy
+                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
+            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
+            cap = cv2.VideoCapture(s)
+            assert cap.isOpened(), f'{st}Failed to open {s}'
+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+            self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0  # 30 FPS fallback
+            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
+
+            _, self.imgs[i] = cap.read()  # guarantee first frame
+            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
+            LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
+            self.threads[i].start()
+        LOGGER.info('')  # newline
+
+        # check for common shapes
+        s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
+        if not self.rect:
+            LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
+
+    def update(self, i, cap, stream):
+        # Read stream `i` frames in daemon thread
+        n, f, read = 0, self.frames[i], 1  # frame number, frame array, inference every 'read' frame
+        while cap.isOpened() and n < f:
+            n += 1
+            # _, self.imgs[index] = cap.read()
+            cap.grab()
+            if n % read == 0:
+                success, im = cap.retrieve()
+                if success:
+                    self.imgs[i] = im
+                else:
+                    LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
+                    self.imgs[i] *= 0
+                    cap.open(stream)  # re-open stream if signal was lost
+            time.sleep(1 / self.fps[i])  # wait time
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        # Letterbox
+        img0 = self.imgs.copy()
+        img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
+
+        # Stack
+        img = np.stack(img, 0)
+
+        # Convert
+        img = img[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
+        img = np.ascontiguousarray(img)
+
+        return self.sources, img, img0, None, ''
+
+    def __len__(self):
+        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+    # Define label paths as a function of image paths
+    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
+    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):
+    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
+    cache_version = 0.6  # dataset labels *.cache version
+
+    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
+        self.img_size = img_size
+        self.augment = augment
+        self.hyp = hyp
+        self.image_weights = image_weights
+        self.rect = False if image_weights else rect
+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
+        self.mosaic_border = [-img_size // 2, -img_size // 2]
+        self.stride = stride
+        self.path = path
+        self.albumentations = Albumentations() if augment else None
+
+        try:
+            f = []  # image files
+            for p in path if isinstance(path, list) else [path]:
+                p = Path(p)  # os-agnostic
+                if p.is_dir():  # dir
+                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+                    # f = list(p.rglob('*.*'))  # pathlib
+                elif p.is_file():  # file
+                    with open(p) as t:
+                        t = t.read().strip().splitlines()
+                        parent = str(p.parent) + os.sep
+                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
+                else:
+                    raise Exception(f'{prefix}{p} does not exist')
+            self.img_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
+            assert self.img_files, f'{prefix}No images found'
+        except Exception as e:
+            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
+
+        # Check cache
+        self.label_files = img2label_paths(self.img_files)  # labels
+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
+        try:
+            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
+            assert cache['version'] == self.cache_version  # same version
+            assert cache['hash'] == get_hash(self.label_files + self.img_files)  # same hash
+        except:
+            cache, exists = self.cache_labels(cache_path, prefix), False  # cache
+
+        # Display cache
+        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupted, total
+        if exists:
+            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+            tqdm(None, desc=prefix + d, total=n, initial=n)  # display cache results
+            if cache['msgs']:
+                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
+        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
+
+        # Read cache
+        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
+        labels, shapes, self.segments = zip(*cache.values())
+        self.labels = list(labels)
+        self.shapes = np.array(shapes, dtype=np.float64)
+        self.img_files = list(cache.keys())  # update
+        self.label_files = img2label_paths(cache.keys())  # update
+        n = len(shapes)  # number of images
+        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
+        nb = bi[-1] + 1  # number of batches
+        self.batch = bi  # batch index of image
+        self.n = n
+        self.indices = range(n)
+
+        # Update labels
+        include_class = []  # filter labels to include only these classes (optional)
+        include_class_array = np.array(include_class).reshape(1, -1)
+        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
+            if include_class:
+                j = (label[:, 0:1] == include_class_array).any(1)
+                self.labels[i] = label[j]
+                if segment:
+                    self.segments[i] = segment[j]
+            if single_cls:  # single-class training, merge all classes into 0
+                self.labels[i][:, 0] = 0
+                if segment:
+                    self.segments[i][:, 0] = 0
+
+        # Rectangular Training
+        if self.rect:
+            # Sort by aspect ratio
+            s = self.shapes  # wh
+            ar = s[:, 1] / s[:, 0]  # aspect ratio
+            irect = ar.argsort()
+            self.img_files = [self.img_files[i] for i in irect]
+            self.label_files = [self.label_files[i] for i in irect]
+            self.labels = [self.labels[i] for i in irect]
+            self.shapes = s[irect]  # wh
+            ar = ar[irect]
+
+            # Set training image shapes
+            shapes = [[1, 1]] * nb
+            for i in range(nb):
+                ari = ar[bi == i]
+                mini, maxi = ari.min(), ari.max()
+                if maxi < 1:
+                    shapes[i] = [maxi, 1]
+                elif mini > 1:
+                    shapes[i] = [1, 1 / mini]
+
+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
+        self.imgs, self.img_npy = [None] * n, [None] * n
+        if cache_images:
+            if cache_images == 'disk':
+                self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
+                self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
+                self.im_cache_dir.mkdir(parents=True, exist_ok=True)
+            gb = 0  # Gigabytes of cached images
+            self.img_hw0, self.img_hw = [None] * n, [None] * n
+            results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
+            pbar = tqdm(enumerate(results), total=n)
+            for i, x in pbar:
+                if cache_images == 'disk':
+                    if not self.img_npy[i].exists():
+                        np.save(self.img_npy[i].as_posix(), x[0])
+                    gb += self.img_npy[i].stat().st_size
+                else:
+                    self.imgs[i], self.img_hw0[i], self.img_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
+                    gb += self.imgs[i].nbytes
+                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
+            pbar.close()
+
+    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+        # Cache dataset labels, check images and read shapes
+        x = {}  # dict
+        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
+        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
+        with Pool(NUM_THREADS) as pool:
+            pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
+                        desc=desc, total=len(self.img_files))
+            for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+                nm += nm_f
+                nf += nf_f
+                ne += ne_f
+                nc += nc_f
+                if im_file:
+                    x[im_file] = [l, shape, segments]
+                if msg:
+                    msgs.append(msg)
+                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+
+        pbar.close()
+        if msgs:
+            LOGGER.info('\n'.join(msgs))
+        if nf == 0:
+            LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
+        x['hash'] = get_hash(self.label_files + self.img_files)
+        x['results'] = nf, nm, ne, nc, len(self.img_files)
+        x['msgs'] = msgs  # warnings
+        x['version'] = self.cache_version  # cache version
+        try:
+            np.save(path, x)  # save cache for next time
+            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
+            LOGGER.info(f'{prefix}New cache created: {path}')
+        except Exception as e:
+            LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # not writeable
+        return x
+
+    def __len__(self):
+        return len(self.img_files)
+
+    # def __iter__(self):
+    #     self.count = -1
+    #     print('ran dataset iter')
+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+    #     return self
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        if mosaic:
+            # Load mosaic
+            img, labels = load_mosaic(self, index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp['mixup']:
+                img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = load_image(self, index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels = random_perspective(img, labels,
+                                                 degrees=hyp['degrees'],
+                                                 translate=hyp['translate'],
+                                                 scale=hyp['scale'],
+                                                 shear=hyp['shear'],
+                                                 perspective=hyp['perspective'])
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
+
+        if self.augment:
+            # Albumentations
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+
+            # Flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+
+            # Cutouts
+            # labels = cutout(img, labels, p=0.5)
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+    @staticmethod
+    def collate_fn(batch):
+        img, label, path, shapes = zip(*batch)  # transposed
+        for i, l in enumerate(label):
+            l[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+    @staticmethod
+    def collate_fn4(batch):
+        img, label, path, shapes = zip(*batch)  # transposed
+        n = len(shapes) // 4
+        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
+        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
+        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
+            i *= 4
+            if random.random() < 0.5:
+                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
+                    0].type(img[i].type())
+                l = label[i]
+            else:
+                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
+                l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+            img4.append(im)
+            label4.append(l)
+
+        for i, l in enumerate(label4):
+            l[:, 0] = i  # add target image index for build_targets()
+
+        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def load_image(self, i):
+    # loads 1 image from dataset index 'i', returns im, original hw, resized hw
+    im = self.imgs[i]
+    if im is None:  # not cached in ram
+        npy = self.img_npy[i]
+        if npy and npy.exists():  # load npy
+            im = np.load(npy)
+        else:  # read image
+            path = self.img_files[i]
+            im = cv2.imread(path)  # BGR
+            assert im is not None, f'Image Not Found {path}'
+        h0, w0 = im.shape[:2]  # orig hw
+        r = self.img_size / max(h0, w0)  # ratio
+        if r != 1:  # if sizes are not equal
+            im = cv2.resize(im, (int(w0 * r), int(h0 * r)),
+                            interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
+        return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
+    else:
+        return self.imgs[i], self.img_hw0[i], self.img_hw[i]  # im, hw_original, hw_resized
+
+
+def load_mosaic(self, index):
+    # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+    labels4, segments4 = [], []
+    s = self.img_size
+    yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+    random.shuffle(indices)
+    for i, index in enumerate(indices):
+        # Load image
+        img, _, (h, w) = load_image(self, index)
+
+        # place img in img4
+        if i == 0:  # top left
+            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+        elif i == 1:  # top right
+            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+        elif i == 2:  # bottom left
+            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+        elif i == 3:  # bottom right
+            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+        padw = x1a - x1b
+        padh = y1a - y1b
+
+        # Labels
+        labels, segments = self.labels[index].copy(), self.segments[index].copy()
+        if labels.size:
+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+            segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+        labels4.append(labels)
+        segments4.extend(segments)
+
+    # Concat/clip labels
+    labels4 = np.concatenate(labels4, 0)
+    for x in (labels4[:, 1:], *segments4):
+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+    # img4, labels4 = replicate(img4, labels4)  # replicate
+
+    # Augment
+    img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+    img4, labels4 = random_perspective(img4, labels4, segments4,
+                                       degrees=self.hyp['degrees'],
+                                       translate=self.hyp['translate'],
+                                       scale=self.hyp['scale'],
+                                       shear=self.hyp['shear'],
+                                       perspective=self.hyp['perspective'],
+                                       border=self.mosaic_border)  # border to remove
+
+    return img4, labels4
+
+
+def load_mosaic9(self, index):
+    # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
+    labels9, segments9 = [], []
+    s = self.img_size
+    indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
+    random.shuffle(indices)
+    for i, index in enumerate(indices):
+        # Load image
+        img, _, (h, w) = load_image(self, index)
+
+        # place img in img9
+        if i == 0:  # center
+            img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+            h0, w0 = h, w
+            c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
+        elif i == 1:  # top
+            c = s, s - h, s + w, s
+        elif i == 2:  # top right
+            c = s + wp, s - h, s + wp + w, s
+        elif i == 3:  # right
+            c = s + w0, s, s + w0 + w, s + h
+        elif i == 4:  # bottom right
+            c = s + w0, s + hp, s + w0 + w, s + hp + h
+        elif i == 5:  # bottom
+            c = s + w0 - w, s + h0, s + w0, s + h0 + h
+        elif i == 6:  # bottom left
+            c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+        elif i == 7:  # left
+            c = s - w, s + h0 - h, s, s + h0
+        elif i == 8:  # top left
+            c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+        padx, pady = c[:2]
+        x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords
+
+        # Labels
+        labels, segments = self.labels[index].copy(), self.segments[index].copy()
+        if labels.size:
+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
+            segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+        labels9.append(labels)
+        segments9.extend(segments)
+
+        # Image
+        img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
+        hp, wp = h, w  # height, width previous
+
+    # Offset
+    yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
+    img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+    # Concat/clip labels
+    labels9 = np.concatenate(labels9, 0)
+    labels9[:, [1, 3]] -= xc
+    labels9[:, [2, 4]] -= yc
+    c = np.array([xc, yc])  # centers
+    segments9 = [x - c for x in segments9]
+
+    for x in (labels9[:, 1:], *segments9):
+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+    # img9, labels9 = replicate(img9, labels9)  # replicate
+
+    # Augment
+    img9, labels9 = random_perspective(img9, labels9, segments9,
+                                       degrees=self.hyp['degrees'],
+                                       translate=self.hyp['translate'],
+                                       scale=self.hyp['scale'],
+                                       shear=self.hyp['shear'],
+                                       perspective=self.hyp['perspective'],
+                                       border=self.mosaic_border)  # border to remove
+
+    return img9, labels9
+
+
+def create_folder(path='./new'):
+    # Create folder
+    if os.path.exists(path):
+        shutil.rmtree(path)  # delete output folder
+    os.makedirs(path)  # make new output folder
+
+
+def flatten_recursive(path='../datasets/coco128'):
+    # Flatten a recursive directory by bringing all files to top level
+    new_path = Path(path + '_flat')
+    create_folder(new_path)
+    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
+        shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path='../datasets/coco128'):  # from utils.datasets import *; extract_boxes()
+    # Convert detection dataset into classification dataset, with one directory per class
+    path = Path(path)  # images dir
+    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
+    files = list(path.rglob('*.*'))
+    n = len(files)  # number of files
+    for im_file in tqdm(files, total=n):
+        if im_file.suffix[1:] in IMG_FORMATS:
+            # image
+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
+            h, w = im.shape[:2]
+
+            # labels
+            lb_file = Path(img2label_paths([str(im_file)])[0])
+            if Path(lb_file).exists():
+                with open(lb_file) as f:
+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
+
+                for j, x in enumerate(lb):
+                    c = int(x[0])  # class
+                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
+                    if not f.parent.is_dir():
+                        f.parent.mkdir(parents=True)
+
+                    b = x[1:] * [w, h, w, h]  # box
+                    # b[2:] = b[2:].max()  # rectangle to square
+                    b[2:] = b[2:] * 1.2 + 3  # pad
+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
+    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+    Usage: from utils.datasets import *; autosplit()
+    Arguments
+        path:            Path to images directory
+        weights:         Train, val, test weights (list, tuple)
+        annotated_only:  Only use images with an annotated txt file
+    """
+    path = Path(path)  # images dir
+    files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
+    n = len(files)  # number of files
+    random.seed(0)  # for reproducibility
+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
+
+    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
+    [(path.parent / x).unlink(missing_ok=True) for x in txt]  # remove existing
+
+    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+    for i, img in tqdm(zip(indices, files), total=n):
+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
+            with open(path.parent / txt[i], 'a') as f:
+                f.write('./' + img.relative_to(path.parent).as_posix() + '\n')  # add image to txt file
+
+
+def verify_image_label(args):
+    # Verify one image-label pair
+    im_file, lb_file, prefix = args
+    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
+    try:
+        # verify images
+        im = Image.open(im_file)
+        im.verify()  # PIL verify
+        shape = exif_size(im)  # image size
+        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
+        if im.format.lower() in ('jpg', 'jpeg'):
+            with open(im_file, 'rb') as f:
+                f.seek(-2, 2)
+                if f.read() != b'\xff\xd9':  # corrupt JPEG
+                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
+                    msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
+
+        # verify labels
+        if os.path.isfile(lb_file):
+            nf = 1  # label found
+            with open(lb_file) as f:
+                l = [x.split() for x in f.read().strip().splitlines() if len(x)]
+                if any([len(x) > 8 for x in l]):  # is segment
+                    classes = np.array([x[0] for x in l], dtype=np.float32)
+                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l]  # (cls, xy1...)
+                    l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
+                l = np.array(l, dtype=np.float32)
+            nl = len(l)
+            if nl:
+                assert l.shape[1] == 5, f'labels require 5 columns, {l.shape[1]} columns detected'
+                assert (l >= 0).all(), f'negative label values {l[l < 0]}'
+                assert (l[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {l[:, 1:][l[:, 1:] > 1]}'
+                _, i = np.unique(l, axis=0, return_index=True)
+                if len(i) < nl:  # duplicate row check
+                    l = l[i]  # remove duplicates
+                    if segments:
+                        segments = segments[i]
+                    msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
+            else:
+                ne = 1  # label empty
+                l = np.zeros((0, 5), dtype=np.float32)
+        else:
+            nm = 1  # label missing
+            l = np.zeros((0, 5), dtype=np.float32)
+        return im_file, l, shape, segments, nm, nf, ne, nc, msg
+    except Exception as e:
+        nc = 1
+        msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
+        return [None, None, None, None, nm, nf, ne, nc, msg]
+
+
+def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
+    """ Return dataset statistics dictionary with images and instances counts per split per class
+    To run in parent directory: export PYTHONPATH="$PWD/yolov5"
+    Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
+    Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
+    Arguments
+        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
+        autodownload:   Attempt to download dataset if not found locally
+        verbose:        Print stats dictionary
+    """
+
+    def round_labels(labels):
+        # Update labels to integer class and 6 decimal place floats
+        return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
+
+    def unzip(path):
+        # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
+        if str(path).endswith('.zip'):  # path is data.zip
+            assert Path(path).is_file(), f'Error unzipping {path}, file not found'
+            ZipFile(path).extractall(path=path.parent)  # unzip
+            dir = path.with_suffix('')  # dataset directory == zip name
+            return True, str(dir), next(dir.rglob('*.yaml'))  # zipped, data_dir, yaml_path
+        else:  # path is data.yaml
+            return False, None, path
+
+    def hub_ops(f, max_dim=1920):
+        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
+        f_new = im_dir / Path(f).name  # dataset-hub image filename
+        try:  # use PIL
+            im = Image.open(f)
+            r = max_dim / max(im.height, im.width)  # ratio
+            if r < 1.0:  # image too large
+                im = im.resize((int(im.width * r), int(im.height * r)))
+            im.save(f_new, 'JPEG', quality=75, optimize=True)  # save
+        except Exception as e:  # use OpenCV
+            print(f'WARNING: HUB ops PIL failure {f}: {e}')
+            im = cv2.imread(f)
+            im_height, im_width = im.shape[:2]
+            r = max_dim / max(im_height, im_width)  # ratio
+            if r < 1.0:  # image too large
+                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
+            cv2.imwrite(str(f_new), im)
+
+    zipped, data_dir, yaml_path = unzip(Path(path))
+    with open(check_yaml(yaml_path), errors='ignore') as f:
+        data = yaml.safe_load(f)  # data dict
+        if zipped:
+            data['path'] = data_dir  # TODO: should this be dir.resolve()?
+    check_dataset(data, autodownload)  # download dataset if missing
+    hub_dir = Path(data['path'] + ('-hub' if hub else ''))
+    stats = {'nc': data['nc'], 'names': data['names']}  # statistics dictionary
+    for split in 'train', 'val', 'test':
+        if data.get(split) is None:
+            stats[split] = None  # i.e. no test set
+            continue
+        x = []
+        dataset = LoadImagesAndLabels(data[split])  # load dataset
+        for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
+            x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
+        x = np.array(x)  # shape(128x80)
+        stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
+                        'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
+                                        'per_class': (x > 0).sum(0).tolist()},
+                        'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
+                                   zip(dataset.img_files, dataset.labels)]}
+
+        if hub:
+            im_dir = hub_dir / 'images'
+            im_dir.mkdir(parents=True, exist_ok=True)
+            for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
+                pass
+
+    # Profile
+    stats_path = hub_dir / 'stats.json'
+    if profile:
+        for _ in range(1):
+            file = stats_path.with_suffix('.npy')
+            t1 = time.time()
+            np.save(file, stats)
+            t2 = time.time()
+            x = np.load(file, allow_pickle=True)
+            print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
+
+            file = stats_path.with_suffix('.json')
+            t1 = time.time()
+            with open(file, 'w') as f:
+                json.dump(stats, f)  # save stats *.json
+            t2 = time.time()
+            with open(file) as f:
+                x = json.load(f)  # load hyps dict
+            print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
+
+    # Save, print and return
+    if hub:
+        print(f'Saving {stats_path.resolve()}...')
+        with open(stats_path, 'w') as f:
+            json.dump(stats, f)  # save stats.json
+    if verbose:
+        print(json.dumps(stats, indent=2, sort_keys=False))
+    return stats