Diff of /yolov5/utils/autobatch.py [000000] .. [f26a44]

Switch to unified view

a b/yolov5/utils/autobatch.py
1
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
"""
3
Auto-batch utils
4
"""
5
6
from copy import deepcopy
7
8
import numpy as np
9
import torch
10
from torch.cuda import amp
11
12
from utils.general import LOGGER, colorstr
13
from utils.torch_utils import profile
14
15
16
def check_train_batch_size(model, imgsz=640):
17
    # Check YOLOv5 training batch size
18
    with amp.autocast():
19
        return autobatch(deepcopy(model).train(), imgsz)  # compute optimal batch size
20
21
22
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
23
    # Automatically estimate best batch size to use `fraction` of available CUDA memory
24
    # Usage:
25
    #     import torch
26
    #     from utils.autobatch import autobatch
27
    #     model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
28
    #     print(autobatch(model))
29
30
    prefix = colorstr('AutoBatch: ')
31
    LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
32
    device = next(model.parameters()).device  # get model device
33
    if device.type == 'cpu':
34
        LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
35
        return batch_size
36
37
    d = str(device).upper()  # 'CUDA:0'
38
    properties = torch.cuda.get_device_properties(device)  # device properties
39
    t = properties.total_memory / 1024 ** 3  # (GiB)
40
    r = torch.cuda.memory_reserved(device) / 1024 ** 3  # (GiB)
41
    a = torch.cuda.memory_allocated(device) / 1024 ** 3  # (GiB)
42
    f = t - (r + a)  # free inside reserved
43
    LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
44
45
    batch_sizes = [1, 2, 4, 8, 16]
46
    try:
47
        img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
48
        y = profile(img, model, n=3, device=device)
49
    except Exception as e:
50
        LOGGER.warning(f'{prefix}{e}')
51
52
    y = [x[2] for x in y if x]  # memory [2]
53
    batch_sizes = batch_sizes[:len(y)]
54
    p = np.polyfit(batch_sizes, y, deg=1)  # first degree polynomial fit
55
    b = int((f * fraction - p[1]) / p[0])  # y intercept (optimal batch size)
56
    LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
57
    return b