|
a |
|
b/yolov5/utils/activations.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Activation functions |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import torch |
|
|
7 |
import torch.nn as nn |
|
|
8 |
import torch.nn.functional as F |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
# SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- |
|
|
12 |
class SiLU(nn.Module): # export-friendly version of nn.SiLU() |
|
|
13 |
@staticmethod |
|
|
14 |
def forward(x): |
|
|
15 |
return x * torch.sigmoid(x) |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() |
|
|
19 |
@staticmethod |
|
|
20 |
def forward(x): |
|
|
21 |
# return x * F.hardsigmoid(x) # for torchscript and CoreML |
|
|
22 |
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for torchscript, CoreML and ONNX |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- |
|
|
26 |
class Mish(nn.Module): |
|
|
27 |
@staticmethod |
|
|
28 |
def forward(x): |
|
|
29 |
return x * F.softplus(x).tanh() |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
class MemoryEfficientMish(nn.Module): |
|
|
33 |
class F(torch.autograd.Function): |
|
|
34 |
@staticmethod |
|
|
35 |
def forward(ctx, x): |
|
|
36 |
ctx.save_for_backward(x) |
|
|
37 |
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) |
|
|
38 |
|
|
|
39 |
@staticmethod |
|
|
40 |
def backward(ctx, grad_output): |
|
|
41 |
x = ctx.saved_tensors[0] |
|
|
42 |
sx = torch.sigmoid(x) |
|
|
43 |
fx = F.softplus(x).tanh() |
|
|
44 |
return grad_output * (fx + x * sx * (1 - fx * fx)) |
|
|
45 |
|
|
|
46 |
def forward(self, x): |
|
|
47 |
return self.F.apply(x) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- |
|
|
51 |
class FReLU(nn.Module): |
|
|
52 |
def __init__(self, c1, k=3): # ch_in, kernel |
|
|
53 |
super().__init__() |
|
|
54 |
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) |
|
|
55 |
self.bn = nn.BatchNorm2d(c1) |
|
|
56 |
|
|
|
57 |
def forward(self, x): |
|
|
58 |
return torch.max(x, self.bn(self.conv(x))) |
|
|
59 |
|
|
|
60 |
|
|
|
61 |
# ACON https://arxiv.org/pdf/2009.04759.pdf ---------------------------------------------------------------------------- |
|
|
62 |
class AconC(nn.Module): |
|
|
63 |
r""" ACON activation (activate or not). |
|
|
64 |
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter |
|
|
65 |
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. |
|
|
66 |
""" |
|
|
67 |
|
|
|
68 |
def __init__(self, c1): |
|
|
69 |
super().__init__() |
|
|
70 |
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
|
71 |
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
|
72 |
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) |
|
|
73 |
|
|
|
74 |
def forward(self, x): |
|
|
75 |
dpx = (self.p1 - self.p2) * x |
|
|
76 |
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
class MetaAconC(nn.Module): |
|
|
80 |
r""" ACON activation (activate or not). |
|
|
81 |
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network |
|
|
82 |
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. |
|
|
83 |
""" |
|
|
84 |
|
|
|
85 |
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r |
|
|
86 |
super().__init__() |
|
|
87 |
c2 = max(r, c1 // r) |
|
|
88 |
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
|
89 |
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
|
90 |
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) |
|
|
91 |
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) |
|
|
92 |
# self.bn1 = nn.BatchNorm2d(c2) |
|
|
93 |
# self.bn2 = nn.BatchNorm2d(c1) |
|
|
94 |
|
|
|
95 |
def forward(self, x): |
|
|
96 |
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) |
|
|
97 |
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891 |
|
|
98 |
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable |
|
|
99 |
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed |
|
|
100 |
dpx = (self.p1 - self.p2) * x |
|
|
101 |
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x |