|
a |
|
b/yolov5/train.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Train a YOLOv5 model on a custom dataset |
|
|
4 |
|
|
|
5 |
Usage: |
|
|
6 |
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 |
|
|
7 |
""" |
|
|
8 |
import argparse |
|
|
9 |
import math |
|
|
10 |
import os |
|
|
11 |
import random |
|
|
12 |
import sys |
|
|
13 |
import time |
|
|
14 |
from copy import deepcopy |
|
|
15 |
from datetime import datetime |
|
|
16 |
from pathlib import Path |
|
|
17 |
|
|
|
18 |
import numpy as np |
|
|
19 |
import torch |
|
|
20 |
import torch.distributed as dist |
|
|
21 |
import torch.nn as nn |
|
|
22 |
import yaml |
|
|
23 |
from torch.cuda import amp |
|
|
24 |
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
25 |
from torch.optim import SGD, Adam, lr_scheduler |
|
|
26 |
from tqdm import tqdm |
|
|
27 |
|
|
|
28 |
FILE = Path(__file__).resolve() |
|
|
29 |
ROOT = FILE.parents[0] # YOLOv5 root directory |
|
|
30 |
if str(ROOT) not in sys.path: |
|
|
31 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
32 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
33 |
|
|
|
34 |
import val # for end-of-epoch mAP |
|
|
35 |
from models.experimental import attempt_load |
|
|
36 |
from models.yolo import Model |
|
|
37 |
from utils.autoanchor import check_anchors |
|
|
38 |
from utils.autobatch import check_train_batch_size |
|
|
39 |
from utils.callbacks import Callbacks |
|
|
40 |
from utils.datasets import create_dataloader |
|
|
41 |
from utils.downloads import attempt_download |
|
|
42 |
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements, |
|
|
43 |
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, |
|
|
44 |
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, |
|
|
45 |
print_args, print_mutation, strip_optimizer) |
|
|
46 |
from utils.loggers import Loggers |
|
|
47 |
from utils.loggers.wandb.wandb_utils import check_wandb_resume |
|
|
48 |
from utils.loss import ComputeLoss |
|
|
49 |
from utils.metrics import fitness |
|
|
50 |
from utils.plots import plot_evolve, plot_labels |
|
|
51 |
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first |
|
|
52 |
|
|
|
53 |
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html |
|
|
54 |
RANK = int(os.getenv('RANK', -1)) |
|
|
55 |
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
def train(hyp, # path/to/hyp.yaml or hyp dictionary |
|
|
59 |
opt, |
|
|
60 |
device, |
|
|
61 |
callbacks |
|
|
62 |
): |
|
|
63 |
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \ |
|
|
64 |
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ |
|
|
65 |
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze |
|
|
66 |
|
|
|
67 |
# Directories |
|
|
68 |
w = save_dir / 'weights' # weights dir |
|
|
69 |
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir |
|
|
70 |
last, best = w / 'last.pt', w / 'best.pt' |
|
|
71 |
|
|
|
72 |
# Hyperparameters |
|
|
73 |
if isinstance(hyp, str): |
|
|
74 |
with open(hyp, errors='ignore') as f: |
|
|
75 |
hyp = yaml.safe_load(f) # load hyps dict |
|
|
76 |
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) |
|
|
77 |
|
|
|
78 |
# Save run settings |
|
|
79 |
if not evolve: |
|
|
80 |
with open(save_dir / 'hyp.yaml', 'w') as f: |
|
|
81 |
yaml.safe_dump(hyp, f, sort_keys=False) |
|
|
82 |
with open(save_dir / 'opt.yaml', 'w') as f: |
|
|
83 |
yaml.safe_dump(vars(opt), f, sort_keys=False) |
|
|
84 |
|
|
|
85 |
# Loggers |
|
|
86 |
data_dict = None |
|
|
87 |
if RANK in [-1, 0]: |
|
|
88 |
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance |
|
|
89 |
if loggers.wandb: |
|
|
90 |
data_dict = loggers.wandb.data_dict |
|
|
91 |
if resume: |
|
|
92 |
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp |
|
|
93 |
|
|
|
94 |
# Register actions |
|
|
95 |
for k in methods(loggers): |
|
|
96 |
callbacks.register_action(k, callback=getattr(loggers, k)) |
|
|
97 |
|
|
|
98 |
# Config |
|
|
99 |
plots = not evolve # create plots |
|
|
100 |
cuda = device.type != 'cpu' |
|
|
101 |
init_seeds(1 + RANK) |
|
|
102 |
with torch_distributed_zero_first(LOCAL_RANK): |
|
|
103 |
data_dict = data_dict or check_dataset(data) # check if None |
|
|
104 |
train_path, val_path = data_dict['train'], data_dict['val'] |
|
|
105 |
nc = 1 if single_cls else int(data_dict['nc']) # number of classes |
|
|
106 |
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names |
|
|
107 |
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check |
|
|
108 |
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset |
|
|
109 |
|
|
|
110 |
# Model |
|
|
111 |
check_suffix(weights, '.pt') # check weights |
|
|
112 |
pretrained = weights.endswith('.pt') |
|
|
113 |
if pretrained: |
|
|
114 |
with torch_distributed_zero_first(LOCAL_RANK): |
|
|
115 |
weights = attempt_download(weights) # download if not found locally |
|
|
116 |
ckpt = torch.load(weights, map_location=device) # load checkpoint |
|
|
117 |
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create |
|
|
118 |
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys |
|
|
119 |
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 |
|
|
120 |
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect |
|
|
121 |
model.load_state_dict(csd, strict=False) # load |
|
|
122 |
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report |
|
|
123 |
else: |
|
|
124 |
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create |
|
|
125 |
|
|
|
126 |
# Freeze |
|
|
127 |
freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze |
|
|
128 |
for k, v in model.named_parameters(): |
|
|
129 |
v.requires_grad = True # train all layers |
|
|
130 |
if any(x in k for x in freeze): |
|
|
131 |
LOGGER.info(f'freezing {k}') |
|
|
132 |
v.requires_grad = False |
|
|
133 |
|
|
|
134 |
# Image size |
|
|
135 |
gs = max(int(model.stride.max()), 32) # grid size (max stride) |
|
|
136 |
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple |
|
|
137 |
|
|
|
138 |
# Batch size |
|
|
139 |
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size |
|
|
140 |
batch_size = check_train_batch_size(model, imgsz) |
|
|
141 |
|
|
|
142 |
# Optimizer |
|
|
143 |
nbs = 64 # nominal batch size |
|
|
144 |
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing |
|
|
145 |
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay |
|
|
146 |
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") |
|
|
147 |
|
|
|
148 |
g0, g1, g2 = [], [], [] # optimizer parameter groups |
|
|
149 |
for v in model.modules(): |
|
|
150 |
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias |
|
|
151 |
g2.append(v.bias) |
|
|
152 |
if isinstance(v, nn.BatchNorm2d): # weight (no decay) |
|
|
153 |
g0.append(v.weight) |
|
|
154 |
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) |
|
|
155 |
g1.append(v.weight) |
|
|
156 |
|
|
|
157 |
if opt.adam: |
|
|
158 |
optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum |
|
|
159 |
else: |
|
|
160 |
optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) |
|
|
161 |
|
|
|
162 |
optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay |
|
|
163 |
optimizer.add_param_group({'params': g2}) # add g2 (biases) |
|
|
164 |
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " |
|
|
165 |
f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias") |
|
|
166 |
del g0, g1, g2 |
|
|
167 |
|
|
|
168 |
# Scheduler |
|
|
169 |
if opt.linear_lr: |
|
|
170 |
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear |
|
|
171 |
else: |
|
|
172 |
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] |
|
|
173 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
174 |
|
|
|
175 |
# EMA |
|
|
176 |
ema = ModelEMA(model) if RANK in [-1, 0] else None |
|
|
177 |
|
|
|
178 |
# Resume |
|
|
179 |
start_epoch, best_fitness = 0, 0.0 |
|
|
180 |
if pretrained: |
|
|
181 |
# Optimizer |
|
|
182 |
if ckpt['optimizer'] is not None: |
|
|
183 |
optimizer.load_state_dict(ckpt['optimizer']) |
|
|
184 |
best_fitness = ckpt['best_fitness'] |
|
|
185 |
|
|
|
186 |
# EMA |
|
|
187 |
if ema and ckpt.get('ema'): |
|
|
188 |
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) |
|
|
189 |
ema.updates = ckpt['updates'] |
|
|
190 |
|
|
|
191 |
# Epochs |
|
|
192 |
start_epoch = ckpt['epoch'] + 1 |
|
|
193 |
if resume: |
|
|
194 |
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' |
|
|
195 |
if epochs < start_epoch: |
|
|
196 |
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") |
|
|
197 |
epochs += ckpt['epoch'] # finetune additional epochs |
|
|
198 |
|
|
|
199 |
del ckpt, csd |
|
|
200 |
|
|
|
201 |
# DP mode |
|
|
202 |
if cuda and RANK == -1 and torch.cuda.device_count() > 1: |
|
|
203 |
LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' |
|
|
204 |
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') |
|
|
205 |
model = torch.nn.DataParallel(model) |
|
|
206 |
|
|
|
207 |
# SyncBatchNorm |
|
|
208 |
if opt.sync_bn and cuda and RANK != -1: |
|
|
209 |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
|
210 |
LOGGER.info('Using SyncBatchNorm()') |
|
|
211 |
|
|
|
212 |
# Trainloader |
|
|
213 |
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, |
|
|
214 |
hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK, |
|
|
215 |
workers=workers, image_weights=opt.image_weights, quad=opt.quad, |
|
|
216 |
prefix=colorstr('train: '), shuffle=True) |
|
|
217 |
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class |
|
|
218 |
nb = len(train_loader) # number of batches |
|
|
219 |
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' |
|
|
220 |
|
|
|
221 |
# Process 0 |
|
|
222 |
if RANK in [-1, 0]: |
|
|
223 |
val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, |
|
|
224 |
hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, |
|
|
225 |
workers=workers, pad=0.5, |
|
|
226 |
prefix=colorstr('val: '))[0] |
|
|
227 |
|
|
|
228 |
if not resume: |
|
|
229 |
labels = np.concatenate(dataset.labels, 0) |
|
|
230 |
# c = torch.tensor(labels[:, 0]) # classes |
|
|
231 |
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency |
|
|
232 |
# model._initialize_biases(cf.to(device)) |
|
|
233 |
if plots: |
|
|
234 |
plot_labels(labels, names, save_dir) |
|
|
235 |
|
|
|
236 |
# Anchors |
|
|
237 |
if not opt.noautoanchor: |
|
|
238 |
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) |
|
|
239 |
model.half().float() # pre-reduce anchor precision |
|
|
240 |
|
|
|
241 |
callbacks.run('on_pretrain_routine_end') |
|
|
242 |
|
|
|
243 |
# DDP mode |
|
|
244 |
if cuda and RANK != -1: |
|
|
245 |
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) |
|
|
246 |
|
|
|
247 |
# Model attributes |
|
|
248 |
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) |
|
|
249 |
hyp['box'] *= 3 / nl # scale to layers |
|
|
250 |
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers |
|
|
251 |
hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers |
|
|
252 |
hyp['label_smoothing'] = opt.label_smoothing |
|
|
253 |
model.nc = nc # attach number of classes to model |
|
|
254 |
model.hyp = hyp # attach hyperparameters to model |
|
|
255 |
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights |
|
|
256 |
model.names = names |
|
|
257 |
|
|
|
258 |
# Start training |
|
|
259 |
t0 = time.time() |
|
|
260 |
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) |
|
|
261 |
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training |
|
|
262 |
last_opt_step = -1 |
|
|
263 |
maps = np.zeros(nc) # mAP per class |
|
|
264 |
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) |
|
|
265 |
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
266 |
scaler = amp.GradScaler(enabled=cuda) |
|
|
267 |
stopper = EarlyStopping(patience=opt.patience) |
|
|
268 |
compute_loss = ComputeLoss(model) # init loss class |
|
|
269 |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' |
|
|
270 |
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' |
|
|
271 |
f"Logging results to {colorstr('bold', save_dir)}\n" |
|
|
272 |
f'Starting training for {epochs} epochs...') |
|
|
273 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ |
|
|
274 |
model.train() |
|
|
275 |
|
|
|
276 |
# Update image weights (optional, single-GPU only) |
|
|
277 |
if opt.image_weights: |
|
|
278 |
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights |
|
|
279 |
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights |
|
|
280 |
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx |
|
|
281 |
|
|
|
282 |
# Update mosaic border (optional) |
|
|
283 |
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) |
|
|
284 |
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders |
|
|
285 |
|
|
|
286 |
mloss = torch.zeros(3, device=device) # mean losses |
|
|
287 |
if RANK != -1: |
|
|
288 |
train_loader.sampler.set_epoch(epoch) |
|
|
289 |
pbar = enumerate(train_loader) |
|
|
290 |
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) |
|
|
291 |
if RANK in [-1, 0]: |
|
|
292 |
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar |
|
|
293 |
optimizer.zero_grad() |
|
|
294 |
for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- |
|
|
295 |
ni = i + nb * epoch # number integrated batches (since train start) |
|
|
296 |
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 |
|
|
297 |
|
|
|
298 |
# Warmup |
|
|
299 |
if ni <= nw: |
|
|
300 |
xi = [0, nw] # x interp |
|
|
301 |
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) |
|
|
302 |
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) |
|
|
303 |
for j, x in enumerate(optimizer.param_groups): |
|
|
304 |
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 |
|
|
305 |
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) |
|
|
306 |
if 'momentum' in x: |
|
|
307 |
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) |
|
|
308 |
|
|
|
309 |
# Multi-scale |
|
|
310 |
if opt.multi_scale: |
|
|
311 |
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size |
|
|
312 |
sf = sz / max(imgs.shape[2:]) # scale factor |
|
|
313 |
if sf != 1: |
|
|
314 |
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) |
|
|
315 |
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) |
|
|
316 |
|
|
|
317 |
# Forward |
|
|
318 |
with amp.autocast(enabled=cuda): |
|
|
319 |
pred = model(imgs) # forward |
|
|
320 |
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size |
|
|
321 |
if RANK != -1: |
|
|
322 |
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode |
|
|
323 |
if opt.quad: |
|
|
324 |
loss *= 4. |
|
|
325 |
|
|
|
326 |
# Backward |
|
|
327 |
scaler.scale(loss).backward() |
|
|
328 |
|
|
|
329 |
# Optimize |
|
|
330 |
if ni - last_opt_step >= accumulate: |
|
|
331 |
scaler.step(optimizer) # optimizer.step |
|
|
332 |
scaler.update() |
|
|
333 |
optimizer.zero_grad() |
|
|
334 |
if ema: |
|
|
335 |
ema.update(model) |
|
|
336 |
last_opt_step = ni |
|
|
337 |
|
|
|
338 |
# Log |
|
|
339 |
if RANK in [-1, 0]: |
|
|
340 |
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses |
|
|
341 |
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) |
|
|
342 |
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % ( |
|
|
343 |
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) |
|
|
344 |
callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) |
|
|
345 |
# end batch ------------------------------------------------------------------------------------------------ |
|
|
346 |
|
|
|
347 |
# Scheduler |
|
|
348 |
lr = [x['lr'] for x in optimizer.param_groups] # for loggers |
|
|
349 |
scheduler.step() |
|
|
350 |
|
|
|
351 |
if RANK in [-1, 0]: |
|
|
352 |
# mAP |
|
|
353 |
callbacks.run('on_train_epoch_end', epoch=epoch) |
|
|
354 |
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) |
|
|
355 |
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop |
|
|
356 |
if not noval or final_epoch: # Calculate mAP |
|
|
357 |
results, maps, _ = val.run(data_dict, |
|
|
358 |
batch_size=batch_size // WORLD_SIZE * 2, |
|
|
359 |
imgsz=imgsz, |
|
|
360 |
model=ema.ema, |
|
|
361 |
single_cls=single_cls, |
|
|
362 |
dataloader=val_loader, |
|
|
363 |
save_dir=save_dir, |
|
|
364 |
plots=False, |
|
|
365 |
callbacks=callbacks, |
|
|
366 |
compute_loss=compute_loss) |
|
|
367 |
|
|
|
368 |
# Update best mAP |
|
|
369 |
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] |
|
|
370 |
if fi > best_fitness: |
|
|
371 |
best_fitness = fi |
|
|
372 |
log_vals = list(mloss) + list(results) + lr |
|
|
373 |
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) |
|
|
374 |
|
|
|
375 |
# Save model |
|
|
376 |
if (not nosave) or (final_epoch and not evolve): # if save |
|
|
377 |
ckpt = {'epoch': epoch, |
|
|
378 |
'best_fitness': best_fitness, |
|
|
379 |
'model': deepcopy(de_parallel(model)).half(), |
|
|
380 |
'ema': deepcopy(ema.ema).half(), |
|
|
381 |
'updates': ema.updates, |
|
|
382 |
'optimizer': optimizer.state_dict(), |
|
|
383 |
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, |
|
|
384 |
'date': datetime.now().isoformat()} |
|
|
385 |
|
|
|
386 |
# Save last, best and delete |
|
|
387 |
torch.save(ckpt, last) |
|
|
388 |
if best_fitness == fi: |
|
|
389 |
torch.save(ckpt, best) |
|
|
390 |
if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): |
|
|
391 |
torch.save(ckpt, w / f'epoch{epoch}.pt') |
|
|
392 |
del ckpt |
|
|
393 |
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) |
|
|
394 |
|
|
|
395 |
# Stop Single-GPU |
|
|
396 |
if RANK == -1 and stopper(epoch=epoch, fitness=fi): |
|
|
397 |
break |
|
|
398 |
|
|
|
399 |
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 |
|
|
400 |
# stop = stopper(epoch=epoch, fitness=fi) |
|
|
401 |
# if RANK == 0: |
|
|
402 |
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks |
|
|
403 |
|
|
|
404 |
# Stop DPP |
|
|
405 |
# with torch_distributed_zero_first(RANK): |
|
|
406 |
# if stop: |
|
|
407 |
# break # must break all DDP ranks |
|
|
408 |
|
|
|
409 |
# end epoch ---------------------------------------------------------------------------------------------------- |
|
|
410 |
# end training ----------------------------------------------------------------------------------------------------- |
|
|
411 |
if RANK in [-1, 0]: |
|
|
412 |
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') |
|
|
413 |
for f in last, best: |
|
|
414 |
if f.exists(): |
|
|
415 |
strip_optimizer(f) # strip optimizers |
|
|
416 |
if f is best: |
|
|
417 |
LOGGER.info(f'\nValidating {f}...') |
|
|
418 |
results, _, _ = val.run(data_dict, |
|
|
419 |
batch_size=batch_size // WORLD_SIZE * 2, |
|
|
420 |
imgsz=imgsz, |
|
|
421 |
model=attempt_load(f, device).half(), |
|
|
422 |
iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 |
|
|
423 |
single_cls=single_cls, |
|
|
424 |
dataloader=val_loader, |
|
|
425 |
save_dir=save_dir, |
|
|
426 |
save_json=is_coco, |
|
|
427 |
verbose=True, |
|
|
428 |
plots=True, |
|
|
429 |
callbacks=callbacks, |
|
|
430 |
compute_loss=compute_loss) # val best model with plots |
|
|
431 |
if is_coco: |
|
|
432 |
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) |
|
|
433 |
|
|
|
434 |
callbacks.run('on_train_end', last, best, plots, epoch, results) |
|
|
435 |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") |
|
|
436 |
|
|
|
437 |
torch.cuda.empty_cache() |
|
|
438 |
return results |
|
|
439 |
|
|
|
440 |
|
|
|
441 |
def parse_opt(known=False): |
|
|
442 |
parser = argparse.ArgumentParser() |
|
|
443 |
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') |
|
|
444 |
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
|
445 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
446 |
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path') |
|
|
447 |
parser.add_argument('--epochs', type=int, default=300) |
|
|
448 |
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') |
|
|
449 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') |
|
|
450 |
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
|
451 |
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|
|
452 |
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
|
453 |
parser.add_argument('--noval', action='store_true', help='only validate final epoch') |
|
|
454 |
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') |
|
|
455 |
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') |
|
|
456 |
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|
|
457 |
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') |
|
|
458 |
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') |
|
|
459 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
460 |
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
|
461 |
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') |
|
|
462 |
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') |
|
|
463 |
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') |
|
|
464 |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
|
465 |
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') |
|
|
466 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
467 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
468 |
parser.add_argument('--quad', action='store_true', help='quad dataloader') |
|
|
469 |
parser.add_argument('--linear-lr', action='store_true', help='linear LR') |
|
|
470 |
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') |
|
|
471 |
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') |
|
|
472 |
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24') |
|
|
473 |
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') |
|
|
474 |
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') |
|
|
475 |
|
|
|
476 |
# Weights & Biases arguments |
|
|
477 |
parser.add_argument('--entity', default=None, help='W&B: Entity') |
|
|
478 |
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') |
|
|
479 |
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') |
|
|
480 |
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') |
|
|
481 |
|
|
|
482 |
opt = parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
483 |
return opt |
|
|
484 |
|
|
|
485 |
|
|
|
486 |
def main(opt, callbacks=Callbacks()): |
|
|
487 |
# Checks |
|
|
488 |
if RANK in [-1, 0]: |
|
|
489 |
print_args(FILE.stem, opt) |
|
|
490 |
check_git_status() |
|
|
491 |
check_requirements(exclude=['thop']) |
|
|
492 |
|
|
|
493 |
# Resume |
|
|
494 |
if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run |
|
|
495 |
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path |
|
|
496 |
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' |
|
|
497 |
with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f: |
|
|
498 |
opt = argparse.Namespace(**yaml.safe_load(f)) # replace |
|
|
499 |
opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate |
|
|
500 |
LOGGER.info(f'Resuming training from {ckpt}') |
|
|
501 |
else: |
|
|
502 |
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ |
|
|
503 |
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks |
|
|
504 |
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
|
505 |
if opt.evolve: |
|
|
506 |
opt.project = str(ROOT / 'runs/evolve') |
|
|
507 |
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume |
|
|
508 |
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) |
|
|
509 |
|
|
|
510 |
# DDP mode |
|
|
511 |
device = select_device(opt.device, batch_size=opt.batch_size) |
|
|
512 |
if LOCAL_RANK != -1: |
|
|
513 |
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' |
|
|
514 |
assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count' |
|
|
515 |
assert not opt.image_weights, '--image-weights argument is not compatible with DDP training' |
|
|
516 |
assert not opt.evolve, '--evolve argument is not compatible with DDP training' |
|
|
517 |
torch.cuda.set_device(LOCAL_RANK) |
|
|
518 |
device = torch.device('cuda', LOCAL_RANK) |
|
|
519 |
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") |
|
|
520 |
|
|
|
521 |
# Train |
|
|
522 |
if not opt.evolve: |
|
|
523 |
train(opt.hyp, opt, device, callbacks) |
|
|
524 |
if WORLD_SIZE > 1 and RANK == 0: |
|
|
525 |
LOGGER.info('Destroying process group... ') |
|
|
526 |
dist.destroy_process_group() |
|
|
527 |
|
|
|
528 |
# Evolve hyperparameters (optional) |
|
|
529 |
else: |
|
|
530 |
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) |
|
|
531 |
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
532 |
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) |
|
|
533 |
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 |
|
|
534 |
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay |
|
|
535 |
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) |
|
|
536 |
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum |
|
|
537 |
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr |
|
|
538 |
'box': (1, 0.02, 0.2), # box loss gain |
|
|
539 |
'cls': (1, 0.2, 4.0), # cls loss gain |
|
|
540 |
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight |
|
|
541 |
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) |
|
|
542 |
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight |
|
|
543 |
'iou_t': (0, 0.1, 0.7), # IoU training threshold |
|
|
544 |
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold |
|
|
545 |
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) |
|
|
546 |
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) |
|
|
547 |
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) |
|
|
548 |
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) |
|
|
549 |
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) |
|
|
550 |
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) |
|
|
551 |
'translate': (1, 0.0, 0.9), # image translation (+/- fraction) |
|
|
552 |
'scale': (1, 0.0, 0.9), # image scale (+/- gain) |
|
|
553 |
'shear': (1, 0.0, 10.0), # image shear (+/- deg) |
|
|
554 |
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 |
|
|
555 |
'flipud': (1, 0.0, 1.0), # image flip up-down (probability) |
|
|
556 |
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) |
|
|
557 |
'mosaic': (1, 0.0, 1.0), # image mixup (probability) |
|
|
558 |
'mixup': (1, 0.0, 1.0), # image mixup (probability) |
|
|
559 |
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) |
|
|
560 |
|
|
|
561 |
with open(opt.hyp, errors='ignore') as f: |
|
|
562 |
hyp = yaml.safe_load(f) # load hyps dict |
|
|
563 |
if 'anchors' not in hyp: # anchors commented in hyp.yaml |
|
|
564 |
hyp['anchors'] = 3 |
|
|
565 |
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch |
|
|
566 |
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices |
|
|
567 |
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' |
|
|
568 |
if opt.bucket: |
|
|
569 |
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists |
|
|
570 |
|
|
|
571 |
for _ in range(opt.evolve): # generations to evolve |
|
|
572 |
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate |
|
|
573 |
# Select parent(s) |
|
|
574 |
parent = 'single' # parent selection method: 'single' or 'weighted' |
|
|
575 |
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) |
|
|
576 |
n = min(5, len(x)) # number of previous results to consider |
|
|
577 |
x = x[np.argsort(-fitness(x))][:n] # top n mutations |
|
|
578 |
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) |
|
|
579 |
if parent == 'single' or len(x) == 1: |
|
|
580 |
# x = x[random.randint(0, n - 1)] # random selection |
|
|
581 |
x = x[random.choices(range(n), weights=w)[0]] # weighted selection |
|
|
582 |
elif parent == 'weighted': |
|
|
583 |
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination |
|
|
584 |
|
|
|
585 |
# Mutate |
|
|
586 |
mp, s = 0.8, 0.2 # mutation probability, sigma |
|
|
587 |
npr = np.random |
|
|
588 |
npr.seed(int(time.time())) |
|
|
589 |
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 |
|
|
590 |
ng = len(meta) |
|
|
591 |
v = np.ones(ng) |
|
|
592 |
while all(v == 1): # mutate until a change occurs (prevent duplicates) |
|
|
593 |
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) |
|
|
594 |
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) |
|
|
595 |
hyp[k] = float(x[i + 7] * v[i]) # mutate |
|
|
596 |
|
|
|
597 |
# Constrain to limits |
|
|
598 |
for k, v in meta.items(): |
|
|
599 |
hyp[k] = max(hyp[k], v[1]) # lower limit |
|
|
600 |
hyp[k] = min(hyp[k], v[2]) # upper limit |
|
|
601 |
hyp[k] = round(hyp[k], 5) # significant digits |
|
|
602 |
|
|
|
603 |
# Train mutation |
|
|
604 |
results = train(hyp.copy(), opt, device, callbacks) |
|
|
605 |
|
|
|
606 |
# Write mutation results |
|
|
607 |
print_mutation(results, hyp.copy(), save_dir, opt.bucket) |
|
|
608 |
|
|
|
609 |
# Plot results |
|
|
610 |
plot_evolve(evolve_csv) |
|
|
611 |
LOGGER.info(f'Hyperparameter evolution finished\n' |
|
|
612 |
f"Results saved to {colorstr('bold', save_dir)}\n" |
|
|
613 |
f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}') |
|
|
614 |
|
|
|
615 |
|
|
|
616 |
def run(**kwargs): |
|
|
617 |
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') |
|
|
618 |
opt = parse_opt(True) |
|
|
619 |
for k, v in kwargs.items(): |
|
|
620 |
setattr(opt, k, v) |
|
|
621 |
main(opt) |
|
|
622 |
|
|
|
623 |
|
|
|
624 |
if __name__ == "__main__": |
|
|
625 |
opt = parse_opt() |
|
|
626 |
main(opt) |