Diff of /README.md [000000] .. [f26a44]

Switch to unified view

a b/README.md
1
# Blood Cancer Detection with YOLOV5
2
3
# Intrudiction
4
5
This notes that I took for target detection with yolov5. In this project, blood cancer cells were detected.
6
7
<img src="https://github.com/safakgunes/Blood-Cancer-Detection-YOLOV5/blob/main/yolov5/runs/train/exp/val_batch1_pred.jpg?raw=true" alt="prediction" width="600"/>
8
9
## Create an environment
10
11
* Update pip with the following command.
12
```bash
13
$ python -m pip install --upgrade pip
14
```
15
* Create an enviroment.
16
```bash 
17
$ conda create --name yolov5 
18
```
19
* Activate this environment
20
```bash
21
$ conda activate yolov5
22
```
23
## Requirements
24
25
* Open the yolov5 directory
26
```bash
27
$ cd <yolov5_dir>
28
```
29
* Setup requirements
30
```bash
31
 $ pip install -r requirements.txt
32
```
33
* Make sure you have cuda and cudnn installs
34
35
## Train
36
37
* Make sure environment activated. Go to yolov5 directory.
38
```bash
39
$ cd <yolov5_dir>
40
```
41
42
* Run commands below
43
```bash
44
% python train.py --img 416 --data ../data.yaml --cfg ./models/yolov5s.yaml  --batch 32 --epochs 50
45
```
46
* You can see the training results and  weights, enter the directory below in the yolov5 folder.
47
48
```bash
49
$ cd <yolov5_dir>/runs/train
50
```
51
## Detect
52
53
* Run commands below
54
55
```bash
56
$ python detect.py --source ../dataset/test/images/ --weights ./runs/train/exp/weights/best.pt --conf 0.4
57
```                                 
58
*  You can see the detection results, enter the directory below in the yolov5 folder.     
59
60
```bash
61
$ cd <yolov5_dir>/runs/detect
62
```