171 lines (167 with data), 21.5 kB
B
¸Yf ã @ sP d Z ddlZddlZddlZddlZddlZddlmZ ddlZ ddl
Z
ddlmZ ddlZddl
ZddlmZ ee ¡ Zejd Zeeejkr¤ej ee¡ eej ee ¡ ¡ZddlmZ ddlmZ ddlmZ dd l m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3 dd
l4m5Z5m6Z6m7Z7 ddl8m9Z9m:Z:m;Z; ddl<m=Z=m>Z> dd
l?m@Z@ ddlAmB mCZD ddlEZEddlFmGZG ddlHmIZImJZJmKZKmLZL dd ZMdd ZNdd ZOdd ZPe> dddddddddd d d d d d d ed! d"d d#d ddedd#e dfd$d%ZQd&d' ZRd(d) ZSeTd*krLeR ZUeSeU dS )+aç
Validate a trained YOLOv5 detection model on a detection dataset
Usage:
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
Usage - formats:
$ python val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
é N)ÚPath)Útqdm)Útabulate)ÚDetectMultiBackend)Ú Callbacks)Úcreate_dataloader)ÚLOGGERÚTQDM_BAR_FORMATÚProfileÚ
check_datasetÚcheck_img_sizeÚcheck_requirementsÚ
check_yamlÚcoco80_to_coco91_classÚcolorstrÚincrement_pathÚnon_max_suppressionÚ
print_argsÚscale_boxesÚ xywh2xyxyÚextract_roi_featuresÚ xyxy2xywhÚget_object_level_feature_maps2Úxywh_to_xyxyÚget_fixed_xyxy)ÚConfusionMatrixÚap_per_classÚbox_iou)Úoutput_to_targetÚplot_imagesÚplot_val_study)Ú
select_deviceÚsmart_inference_mode)ÚMyCNN)Ú roi_align)Úaccuracy_scoreÚprecision_scoreÚrecall_scoreÚf1_scorec
C s¨ t |¡ddddg }x| ¡ D ]^ }}}tt |¡ dd¡| d¡ ¡ }|rb|f||fn|f|} t|d$}
|
dt| ¡ | d ¡ W d Q R X q W d S )Né r é éÿÿÿÿÚaz%g Ú
) ÚtorchÚtensorÚtolistr ÚviewÚopenÚwriteÚlenÚrstrip)ÚprednÚ save_confÚshapeÚfileÚgnÚxyxyÚconfÚclsÚxywhÚlineÚf© rA úB/home/iml/Desktop/Talha/yolov5_P2_ROI_HCM_Micro_1000_Github/val.pyÚsave_one_txt? s $rC c C sº |j ¡ rt|j n|j }t| d d
d d
f }|d d
d d
f |d d
dd
f d 8 <