Diff of /utils/torch_utils.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/utils/torch_utils.py
@@ -0,0 +1,432 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+PyTorch utils
+"""
+
+import math
+import os
+import platform
+import subprocess
+import time
+import warnings
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.parallel import DistributedDataParallel as DDP
+
+from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+# Suppress PyTorch warnings
+warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
+warnings.filterwarnings('ignore', category=UserWarning)
+
+
+def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
+    # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
+    def decorate(fn):
+        return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
+
+    return decorate
+
+
+def smartCrossEntropyLoss(label_smoothing=0.0):
+    # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
+    if check_version(torch.__version__, '1.10.0'):
+        return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
+    if label_smoothing > 0:
+        LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0')
+    return nn.CrossEntropyLoss()
+
+
+def smart_DDP(model):
+    # Model DDP creation with checks
+    assert not check_version(torch.__version__, '1.12.0', pinned=True), \
+        'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
+        'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
+    if check_version(torch.__version__, '1.11.0'):
+        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
+    else:
+        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
+
+
+def reshape_classifier_output(model, n=1000):
+    # Update a TorchVision classification model to class count 'n' if required
+    from models.common import Classify
+    name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
+    if isinstance(m, Classify):  # YOLOv5 Classify() head
+        if m.linear.out_features != n:
+            m.linear = nn.Linear(m.linear.in_features, n)
+    elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
+        if m.out_features != n:
+            setattr(model, name, nn.Linear(m.in_features, n))
+    elif isinstance(m, nn.Sequential):
+        types = [type(x) for x in m]
+        if nn.Linear in types:
+            i = types.index(nn.Linear)  # nn.Linear index
+            if m[i].out_features != n:
+                m[i] = nn.Linear(m[i].in_features, n)
+        elif nn.Conv2d in types:
+            i = types.index(nn.Conv2d)  # nn.Conv2d index
+            if m[i].out_channels != n:
+                m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+    # Decorator to make all processes in distributed training wait for each local_master to do something
+    if local_rank not in [-1, 0]:
+        dist.barrier(device_ids=[local_rank])
+    yield
+    if local_rank == 0:
+        dist.barrier(device_ids=[0])
+
+
+def device_count():
+    # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
+    assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
+    try:
+        cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""'  # Windows
+        return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
+    except Exception:
+        return 0
+
+
+def select_device(device='', batch_size=0, newline=True):
+    # device = None or 'cpu' or 0 or '0' or '0,1,2,3'
+    s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
+    device = str(device).strip().lower().replace('cuda:', '').replace('none', '')  # to string, 'cuda:0' to '0'
+    cpu = device == 'cpu'
+    mps = device == 'mps'  # Apple Metal Performance Shaders (MPS)
+    if cpu or mps:
+        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
+    elif device:  # non-cpu device requested
+        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable - must be before assert is_available()
+        assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
+            f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
+
+    if not cpu and not mps and torch.cuda.is_available():  # prefer GPU if available
+        devices = device.split(',') if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
+        n = len(devices)  # device count
+        if n > 1 and batch_size > 0:  # check batch_size is divisible by device_count
+            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
+        space = ' ' * (len(s) + 1)
+        for i, d in enumerate(devices):
+            p = torch.cuda.get_device_properties(i)
+            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"  # bytes to MB
+        arg = 'cuda:0'
+    elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available():  # prefer MPS if available
+        s += 'MPS\n'
+        arg = 'mps'
+    else:  # revert to CPU
+        s += 'CPU\n'
+        arg = 'cpu'
+
+    if not newline:
+        s = s.rstrip()
+    LOGGER.info(s)
+    return torch.device(arg)
+
+
+def time_sync():
+    # PyTorch-accurate time
+    if torch.cuda.is_available():
+        torch.cuda.synchronize()
+    return time.time()
+
+
+def profile(input, ops, n=10, device=None):
+    """ YOLOv5 speed/memory/FLOPs profiler
+    Usage:
+        input = torch.randn(16, 3, 640, 640)
+        m1 = lambda x: x * torch.sigmoid(x)
+        m2 = nn.SiLU()
+        profile(input, [m1, m2], n=100)  # profile over 100 iterations
+    """
+    results = []
+    if not isinstance(device, torch.device):
+        device = select_device(device)
+    print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
+          f"{'input':>24s}{'output':>24s}")
+
+    for x in input if isinstance(input, list) else [input]:
+        x = x.to(device)
+        x.requires_grad = True
+        for m in ops if isinstance(ops, list) else [ops]:
+            m = m.to(device) if hasattr(m, 'to') else m  # device
+            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
+            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
+            try:
+                flops = thop.profile(m, inputs=(x, ), verbose=False)[0] / 1E9 * 2  # GFLOPs
+            except Exception:
+                flops = 0
+
+            try:
+                for _ in range(n):
+                    t[0] = time_sync()
+                    y = m(x)
+                    t[1] = time_sync()
+                    try:
+                        _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
+                        t[2] = time_sync()
+                    except Exception:  # no backward method
+                        # print(e)  # for debug
+                        t[2] = float('nan')
+                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
+                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
+                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
+                s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y))  # shapes
+                p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0  # parameters
+                print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
+                results.append([p, flops, mem, tf, tb, s_in, s_out])
+            except Exception as e:
+                print(e)
+                results.append(None)
+            torch.cuda.empty_cache()
+    return results
+
+
+def is_parallel(model):
+    # Returns True if model is of type DP or DDP
+    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def de_parallel(model):
+    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
+    return model.module if is_parallel(model) else model
+
+
+def initialize_weights(model):
+    for m in model.modules():
+        t = type(m)
+        if t is nn.Conv2d:
+            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+        elif t is nn.BatchNorm2d:
+            m.eps = 1e-3
+            m.momentum = 0.03
+        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+            m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+    # Finds layer indices matching module class 'mclass'
+    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+    # Return global model sparsity
+    a, b = 0, 0
+    for p in model.parameters():
+        a += p.numel()
+        b += (p == 0).sum()
+    return b / a
+
+
+def prune(model, amount=0.3):
+    # Prune model to requested global sparsity
+    import torch.nn.utils.prune as prune
+    for name, m in model.named_modules():
+        if isinstance(m, nn.Conv2d):
+            prune.l1_unstructured(m, name='weight', amount=amount)  # prune
+            prune.remove(m, 'weight')  # make permanent
+    LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
+
+
+def fuse_conv_and_bn(conv, bn):
+    # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+    fusedconv = nn.Conv2d(conv.in_channels,
+                          conv.out_channels,
+                          kernel_size=conv.kernel_size,
+                          stride=conv.stride,
+                          padding=conv.padding,
+                          dilation=conv.dilation,
+                          groups=conv.groups,
+                          bias=True).requires_grad_(False).to(conv.weight.device)
+
+    # Prepare filters
+    w_conv = conv.weight.clone().view(conv.out_channels, -1)
+    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+    # Prepare spatial bias
+    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+    return fusedconv
+
+
+def model_info(model, verbose=False, imgsz=640):
+    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+    n_p = sum(x.numel() for x in model.parameters())  # number parameters
+    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
+    if verbose:
+        print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
+        for i, (name, p) in enumerate(model.named_parameters()):
+            name = name.replace('module_list.', '')
+            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+    try:  # FLOPs
+        p = next(model.parameters())
+        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
+        im = torch.empty((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
+        flops = thop.profile(deepcopy(model), inputs=(im, ), verbose=False)[0] / 1E9 * 2  # stride GFLOPs
+        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
+        fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs'  # 640x640 GFLOPs
+    except Exception:
+        fs = ''
+
+    name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
+    LOGGER.info(f'{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}')
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
+    # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
+    if ratio == 1.0:
+        return img
+    h, w = img.shape[2:]
+    s = (int(h * ratio), int(w * ratio))  # new size
+    img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
+    if not same_shape:  # pad/crop img
+        h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
+    return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+    # Copy attributes from b to a, options to only include [...] and to exclude [...]
+    for k, v in b.__dict__.items():
+        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+            continue
+        else:
+            setattr(a, k, v)
+
+
+def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
+    # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
+    g = [], [], []  # optimizer parameter groups
+    bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
+    for v in model.modules():
+        for p_name, p in v.named_parameters(recurse=0):
+            if p_name == 'bias':  # bias (no decay)
+                g[2].append(p)
+            elif p_name == 'weight' and isinstance(v, bn):  # weight (no decay)
+                g[1].append(p)
+            else:
+                g[0].append(p)  # weight (with decay)
+
+    if name == 'Adam':
+        optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999))  # adjust beta1 to momentum
+    elif name == 'AdamW':
+        optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
+    elif name == 'RMSProp':
+        optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
+    elif name == 'SGD':
+        optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
+    else:
+        raise NotImplementedError(f'Optimizer {name} not implemented.')
+
+    optimizer.add_param_group({'params': g[0], 'weight_decay': decay})  # add g0 with weight_decay
+    optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0})  # add g1 (BatchNorm2d weights)
+    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
+                f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias')
+    return optimizer
+
+
+def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
+    # YOLOv5 torch.hub.load() wrapper with smart error/issue handling
+    if check_version(torch.__version__, '1.9.1'):
+        kwargs['skip_validation'] = True  # validation causes GitHub API rate limit errors
+    if check_version(torch.__version__, '1.12.0'):
+        kwargs['trust_repo'] = True  # argument required starting in torch 0.12
+    try:
+        return torch.hub.load(repo, model, **kwargs)
+    except Exception:
+        return torch.hub.load(repo, model, force_reload=True, **kwargs)
+
+
+def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
+    # Resume training from a partially trained checkpoint
+    best_fitness = 0.0
+    start_epoch = ckpt['epoch'] + 1
+    if ckpt['optimizer'] is not None:
+        optimizer.load_state_dict(ckpt['optimizer'])  # optimizer
+        best_fitness = ckpt['best_fitness']
+    if ema and ckpt.get('ema'):
+        ema.ema.load_state_dict(ckpt['ema'].float().state_dict())  # EMA
+        ema.updates = ckpt['updates']
+    if resume:
+        assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
+                                f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
+        LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
+    if epochs < start_epoch:
+        LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
+        epochs += ckpt['epoch']  # finetune additional epochs
+    return best_fitness, start_epoch, epochs
+
+
+class EarlyStopping:
+    # YOLOv5 simple early stopper
+    def __init__(self, patience=30):
+        self.best_fitness = 0.0  # i.e. mAP
+        self.best_epoch = 0
+        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
+        self.possible_stop = False  # possible stop may occur next epoch
+
+    def __call__(self, epoch, fitness):
+        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
+            self.best_epoch = epoch
+            self.best_fitness = fitness
+        delta = epoch - self.best_epoch  # epochs without improvement
+        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
+        stop = delta >= self.patience  # stop training if patience exceeded
+        if stop:
+            LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
+                        f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
+                        f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
+                        f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
+        return stop
+
+
+class ModelEMA:
+    """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
+    Keeps a moving average of everything in the model state_dict (parameters and buffers)
+    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+    """
+
+    def __init__(self, model, decay=0.9999, tau=2000, updates=0):
+        # Create EMA
+        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
+        self.updates = updates  # number of EMA updates
+        self.decay = lambda x: decay * (1 - math.exp(-x / tau))  # decay exponential ramp (to help early epochs)
+        for p in self.ema.parameters():
+            p.requires_grad_(False)
+
+    def update(self, model):
+        # Update EMA parameters
+        self.updates += 1
+        d = self.decay(self.updates)
+
+        msd = de_parallel(model).state_dict()  # model state_dict
+        for k, v in self.ema.state_dict().items():
+            if v.dtype.is_floating_point:  # true for FP16 and FP32
+                v *= d
+                v += (1 - d) * msd[k].detach()
+        # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
+
+    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+        # Update EMA attributes
+        copy_attr(self.ema, model, include, exclude)