--- a +++ b/utils/torch_utils.py @@ -0,0 +1,432 @@ +# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license +""" +PyTorch utils +""" + +import math +import os +import platform +import subprocess +import time +import warnings +from contextlib import contextmanager +from copy import deepcopy +from pathlib import Path + +import torch +import torch.distributed as dist +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.parallel import DistributedDataParallel as DDP + +from utils.general import LOGGER, check_version, colorstr, file_date, git_describe + +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) + +try: + import thop # for FLOPs computation +except ImportError: + thop = None + +# Suppress PyTorch warnings +warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') +warnings.filterwarnings('ignore', category=UserWarning) + + +def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')): + # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator + def decorate(fn): + return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn) + + return decorate + + +def smartCrossEntropyLoss(label_smoothing=0.0): + # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0 + if check_version(torch.__version__, '1.10.0'): + return nn.CrossEntropyLoss(label_smoothing=label_smoothing) + if label_smoothing > 0: + LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0') + return nn.CrossEntropyLoss() + + +def smart_DDP(model): + # Model DDP creation with checks + assert not check_version(torch.__version__, '1.12.0', pinned=True), \ + 'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \ + 'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395' + if check_version(torch.__version__, '1.11.0'): + return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True) + else: + return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) + + +def reshape_classifier_output(model, n=1000): + # Update a TorchVision classification model to class count 'n' if required + from models.common import Classify + name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module + if isinstance(m, Classify): # YOLOv5 Classify() head + if m.linear.out_features != n: + m.linear = nn.Linear(m.linear.in_features, n) + elif isinstance(m, nn.Linear): # ResNet, EfficientNet + if m.out_features != n: + setattr(model, name, nn.Linear(m.in_features, n)) + elif isinstance(m, nn.Sequential): + types = [type(x) for x in m] + if nn.Linear in types: + i = types.index(nn.Linear) # nn.Linear index + if m[i].out_features != n: + m[i] = nn.Linear(m[i].in_features, n) + elif nn.Conv2d in types: + i = types.index(nn.Conv2d) # nn.Conv2d index + if m[i].out_channels != n: + m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) + + +@contextmanager +def torch_distributed_zero_first(local_rank: int): + # Decorator to make all processes in distributed training wait for each local_master to do something + if local_rank not in [-1, 0]: + dist.barrier(device_ids=[local_rank]) + yield + if local_rank == 0: + dist.barrier(device_ids=[0]) + + +def device_count(): + # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows + assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows' + try: + cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows + return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) + except Exception: + return 0 + + +def select_device(device='', batch_size=0, newline=True): + # device = None or 'cpu' or 0 or '0' or '0,1,2,3' + s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' + device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' + cpu = device == 'cpu' + mps = device == 'mps' # Apple Metal Performance Shaders (MPS) + if cpu or mps: + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False + elif device: # non-cpu device requested + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() + assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ + f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" + + if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available + devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 + n = len(devices) # device count + if n > 1 and batch_size > 0: # check batch_size is divisible by device_count + assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' + space = ' ' * (len(s) + 1) + for i, d in enumerate(devices): + p = torch.cuda.get_device_properties(i) + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB + arg = 'cuda:0' + elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available + s += 'MPS\n' + arg = 'mps' + else: # revert to CPU + s += 'CPU\n' + arg = 'cpu' + + if not newline: + s = s.rstrip() + LOGGER.info(s) + return torch.device(arg) + + +def time_sync(): + # PyTorch-accurate time + if torch.cuda.is_available(): + torch.cuda.synchronize() + return time.time() + + +def profile(input, ops, n=10, device=None): + """ YOLOv5 speed/memory/FLOPs profiler + Usage: + input = torch.randn(16, 3, 640, 640) + m1 = lambda x: x * torch.sigmoid(x) + m2 = nn.SiLU() + profile(input, [m1, m2], n=100) # profile over 100 iterations + """ + results = [] + if not isinstance(device, torch.device): + device = select_device(device) + print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" + f"{'input':>24s}{'output':>24s}") + + for x in input if isinstance(input, list) else [input]: + x = x.to(device) + x.requires_grad = True + for m in ops if isinstance(ops, list) else [ops]: + m = m.to(device) if hasattr(m, 'to') else m # device + m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m + tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward + try: + flops = thop.profile(m, inputs=(x, ), verbose=False)[0] / 1E9 * 2 # GFLOPs + except Exception: + flops = 0 + + try: + for _ in range(n): + t[0] = time_sync() + y = m(x) + t[1] = time_sync() + try: + _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() + t[2] = time_sync() + except Exception: # no backward method + # print(e) # for debug + t[2] = float('nan') + tf += (t[1] - t[0]) * 1000 / n # ms per op forward + tb += (t[2] - t[1]) * 1000 / n # ms per op backward + mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) + s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes + p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters + print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') + results.append([p, flops, mem, tf, tb, s_in, s_out]) + except Exception as e: + print(e) + results.append(None) + torch.cuda.empty_cache() + return results + + +def is_parallel(model): + # Returns True if model is of type DP or DDP + return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) + + +def de_parallel(model): + # De-parallelize a model: returns single-GPU model if model is of type DP or DDP + return model.module if is_parallel(model) else model + + +def initialize_weights(model): + for m in model.modules(): + t = type(m) + if t is nn.Conv2d: + pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif t is nn.BatchNorm2d: + m.eps = 1e-3 + m.momentum = 0.03 + elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: + m.inplace = True + + +def find_modules(model, mclass=nn.Conv2d): + # Finds layer indices matching module class 'mclass' + return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] + + +def sparsity(model): + # Return global model sparsity + a, b = 0, 0 + for p in model.parameters(): + a += p.numel() + b += (p == 0).sum() + return b / a + + +def prune(model, amount=0.3): + # Prune model to requested global sparsity + import torch.nn.utils.prune as prune + for name, m in model.named_modules(): + if isinstance(m, nn.Conv2d): + prune.l1_unstructured(m, name='weight', amount=amount) # prune + prune.remove(m, 'weight') # make permanent + LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity') + + +def fuse_conv_and_bn(conv, bn): + # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ + fusedconv = nn.Conv2d(conv.in_channels, + conv.out_channels, + kernel_size=conv.kernel_size, + stride=conv.stride, + padding=conv.padding, + dilation=conv.dilation, + groups=conv.groups, + bias=True).requires_grad_(False).to(conv.weight.device) + + # Prepare filters + w_conv = conv.weight.clone().view(conv.out_channels, -1) + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) + fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) + + # Prepare spatial bias + b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) + fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) + + return fusedconv + + +def model_info(model, verbose=False, imgsz=640): + # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] + n_p = sum(x.numel() for x in model.parameters()) # number parameters + n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients + if verbose: + print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") + for i, (name, p) in enumerate(model.named_parameters()): + name = name.replace('module_list.', '') + print('%5g %40s %9s %12g %20s %10.3g %10.3g' % + (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) + + try: # FLOPs + p = next(model.parameters()) + stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride + im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format + flops = thop.profile(deepcopy(model), inputs=(im, ), verbose=False)[0] / 1E9 * 2 # stride GFLOPs + imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float + fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs + except Exception: + fs = '' + + name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' + LOGGER.info(f'{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}') + + +def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) + # Scales img(bs,3,y,x) by ratio constrained to gs-multiple + if ratio == 1.0: + return img + h, w = img.shape[2:] + s = (int(h * ratio), int(w * ratio)) # new size + img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize + if not same_shape: # pad/crop img + h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) + return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean + + +def copy_attr(a, b, include=(), exclude=()): + # Copy attributes from b to a, options to only include [...] and to exclude [...] + for k, v in b.__dict__.items(): + if (len(include) and k not in include) or k.startswith('_') or k in exclude: + continue + else: + setattr(a, k, v) + + +def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): + # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay + g = [], [], [] # optimizer parameter groups + bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() + for v in model.modules(): + for p_name, p in v.named_parameters(recurse=0): + if p_name == 'bias': # bias (no decay) + g[2].append(p) + elif p_name == 'weight' and isinstance(v, bn): # weight (no decay) + g[1].append(p) + else: + g[0].append(p) # weight (with decay) + + if name == 'Adam': + optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum + elif name == 'AdamW': + optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) + elif name == 'RMSProp': + optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) + elif name == 'SGD': + optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) + else: + raise NotImplementedError(f'Optimizer {name} not implemented.') + + optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay + optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) + LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " + f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias') + return optimizer + + +def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs): + # YOLOv5 torch.hub.load() wrapper with smart error/issue handling + if check_version(torch.__version__, '1.9.1'): + kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors + if check_version(torch.__version__, '1.12.0'): + kwargs['trust_repo'] = True # argument required starting in torch 0.12 + try: + return torch.hub.load(repo, model, **kwargs) + except Exception: + return torch.hub.load(repo, model, force_reload=True, **kwargs) + + +def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True): + # Resume training from a partially trained checkpoint + best_fitness = 0.0 + start_epoch = ckpt['epoch'] + 1 + if ckpt['optimizer'] is not None: + optimizer.load_state_dict(ckpt['optimizer']) # optimizer + best_fitness = ckpt['best_fitness'] + if ema and ckpt.get('ema'): + ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA + ema.updates = ckpt['updates'] + if resume: + assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \ + f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'" + LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs') + if epochs < start_epoch: + LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") + epochs += ckpt['epoch'] # finetune additional epochs + return best_fitness, start_epoch, epochs + + +class EarlyStopping: + # YOLOv5 simple early stopper + def __init__(self, patience=30): + self.best_fitness = 0.0 # i.e. mAP + self.best_epoch = 0 + self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop + self.possible_stop = False # possible stop may occur next epoch + + def __call__(self, epoch, fitness): + if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training + self.best_epoch = epoch + self.best_fitness = fitness + delta = epoch - self.best_epoch # epochs without improvement + self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch + stop = delta >= self.patience # stop training if patience exceeded + if stop: + LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' + f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' + f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' + f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') + return stop + + +class ModelEMA: + """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models + Keeps a moving average of everything in the model state_dict (parameters and buffers) + For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + """ + + def __init__(self, model, decay=0.9999, tau=2000, updates=0): + # Create EMA + self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA + self.updates = updates # number of EMA updates + self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) + for p in self.ema.parameters(): + p.requires_grad_(False) + + def update(self, model): + # Update EMA parameters + self.updates += 1 + d = self.decay(self.updates) + + msd = de_parallel(model).state_dict() # model state_dict + for k, v in self.ema.state_dict().items(): + if v.dtype.is_floating_point: # true for FP16 and FP32 + v *= d + v += (1 - d) * msd[k].detach() + # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32' + + def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): + # Update EMA attributes + copy_attr(self.ema, model, include, exclude)